
201 West 103rd Street
Indianapolis, Indiana 46290

B Y E X A M P L E

Benoît Marchal

XXMMLL

01 2429 FM 11/12/99 1:00 PM Page i

XML by Example
Copyright © 2000 by Que ®

All rights reserved. No part of this book shall be repro-
duced, stored in a retrieval system, or transmitted by
any means, electronic, mechanical, photocopying,
recording, or otherwise, without written permission
from the publisher. No patent liability is assumed with
respect to the use of the information contained herein.
Although every precaution has been taken in the
preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is
any liability assumed for damages resulting from the
use of the information contained herein.

International Standard Book Number: 0-7897-2242-9

Library of Congress Catalog Card Number: 99-66449

Printed in the United States of America

First Printing: December 1999

01 00 4 3 2

Trademarks
All terms mentioned in this book that are known to be
trademarks or service marks have been appropriately
capitalized. Que cannot attest to the accuracy of this
information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or
service mark.

Warning and Disclaimer
Every effort has been made to make this book as com-
plete and as accurate as possible, but no warranty or
fitness is implied. The information provided is on an
“as is” basis. The author and the publisher shall have
neither liability nor responsibility to any person or
entity with respect to any loss or damages arising from
the information contained in this book.

Publisher
John Pierce

Acquisitions Editor
Todd Green

Development Editor
Susan Hobbs

Technical Editor
Karl Fast

Managing Editor
Thomas F. Hayes

Project Editor
Karen S. Shields

Copy Editor
Sossity Smith

Indexer
Tina Trettin

Proofreader
Maribeth Echard

Team Coordinator
Julie Otto

Media Developer
Jay Payne

Interior Designer
Karen Ruggles

Cover Designer
Rader Design

Copy Writer
Eric Borgert

Production
Louis Porter Jr.

01 2429 FM 2.29.2000 2:18 PM Page ii

Contents at a Glance

Introduction .1
1 The XML Galaxy .5
2 The XML Syntax .41
3 XML Schemas .69
4 Namespaces .107
5 XSL Transformation .125
6 XSL Formatting Objects and Cascading Style Sheet 161
7 The Parser and DOM .191
8 Alternative API: SAX .231
9 Writing XML .269
10 Modeling for Flexibility .307
11 N-Tiered Architecture and XML .345
12 Putting It All Together: An e-Commerce Example 381
Appendix A: Crash Course on Java .457
Glossary .485
Index .489

iii

01 2429 FM 11/12/99 1:00 PM Page iii

Table of Contents

Introduction .1
The by Example Series .1
Who Should Use This Book .1
This Book’s Organization .2
Conventions Used in This Book .3

1 The XML Galaxy .5
Introduction .6
A First Look at XML .8

No Predefined Tags .9
Stricter .10

A First Look at Document Structure .10
Markup Language History .14

Mark-Up .14
Procedural Markup .14
Generic Coding .17
Standard Generalized Markup Language 18
Hypertext Markup Language .20
eXtensible Markup Language .26

Application of XML .28
Document Applications .29
Data Applications .29

Companion Standards .32
XML Namespace .33
Style Sheets .33
DOM and SAX .35
XLink and XPointer .35

XML Software .36
XML Browser .36
XML Editors .37
XML Parsers .37
XSL Processor .37

2 The XML Syntax .41
A First Look at the XML Syntax .42

Getting Started with XML Markup 42
Element’s Start and End Tags .44
Names in XML .45
Attributes .46
Empty Element .47
Nesting of Elements .47
Root .48
XML Declaration .49

01 2429 FM 11/12/99 1:00 PM Page iv

Advanced Topics .50
Comments .50
Unicode .50
Entities .52
Special Attributes .53
Processing Instructions .53
CDATA Sections .54

Frequently Asked Questions on XML .55
Code Indenting .55
Why the End Tag? .56
XML and Semantic .58

Four Common Errors .59
Forget End Tags .59
Forget That XML Is Case Sensitive 60
Introduce Spaces in the Name of Element 60
Forget the Quotes for Attribute Value 60

XML Editors .60
Three Applications of XML .61

Publishing .62
Business Document Exchange .63
Channel .65

3 XML Schemas .69
The DTD Syntax .70

Element Declaration .71
Element Name .72
Special Keywords .72
The Secret of Plus, Star, and Question Mark 73
The Secret of Comma and Vertical Bar 73
Element Content and Indenting .74
Nonambiguous Model .74
Attributes .75
Document Type Declaration .76
Internal and External Subsets .77
Public Identifiers Format .79
Standalone Documents .79

Why Schemas? .80
Well-Formed and Valid Documents .81

Relationship Between the DTD and the Document 82
Benefits of the DTD .84
Validating the Document .84

Entities and Notations .85
General and Parameter Entities .86
Internal and External Entities .87

Notation .89
Managing Documents with Entities 90

v

01 2429 FM 11/12/99 1:00 PM Page v

vi

Conditional Sections .91
Designing DTDs .91

Main Advantages of Using Existing DTDs 92
Designing DTDs from an Object Model .92

On Elements Versus Attributes .96
Creating the DTD from Scratch .97

On Flexibility .97
Modeling an XML Document .100
Naming of Elements .103

A Tool to Help .104
New XML Schemas .104

4 Namespaces .107
The Problem Namespaces Solves .108
Namespaces .112

The Namespace Name .114
URIs .114

What’s in a Name? .115
Registering a Domain Name .116
Creating a Sensible URL .117
URNs .117

Scoping .118
Namespaces and DTD .119
Applications of Namespaces .120

XML Style Sheet .121
Links .122

5 XSL Transformation .125
Why Styling? .126

CSS .126
XSL .126

XSL .127
LotusXSL .127
Concepts of XSLT .128

Basic XSLT .128
Viewing XML in a Browser .129
A Simple Style Sheet .131
Stylesheet Element .134
Template Elements .134
Paths .135
Matching on Attributes .136
Matching Text and Functions .136
Deeper in the Tree .137
Following the Processor .138
Creating Nodes in the Resulting Tree 140

Supporting a Different Medium .141
Text Conversion .141
Customized Views .144

01 2429 FM 11/12/99 1:00 PM Page vi

vii

Where to Apply the Style Sheet .145
Internet Explorer 5.0 .145
Changes to the Style Sheet .148

Advanced XSLT .149
Declaring HTML Entities in a Style Sheet 153
Reorganizing the Source Tree .153
Calling a Template .154
Repetitions .154

Using XSLT to Extract Information .155
6 XSL Formatting Objects and Cascading Style Sheet 161

Rendering XML Without HTML .162
The Basics of CSS .163

Simple CSS .164
Comments .166
Selector .166
Priority .167
Properties .168

Flow Objects and Boxes .168
Flow Objects .168
Properties Inheritance .169
Boxes .169

CSS Property Values .172
Length .172
Percentage .173
Color .173
URL .173

Box Properties .174
Display Property .174
Margin Properties .174
Padding Properties .175
Border-Style Properties .175
Border-Width Properties .175
Border Shorthand .175

Text and Font Properties .176
Font Name .176
Font Size .176
Font Style and Weight .177
Text Alignment .177
Text Indent and Line Height .177
Font Shorthand .178

Color and Background Properties .178
Foreground Color .178
Background Color .178
Border Color .178
Background Image .178

01 2429 FM 11/12/99 1:00 PM Page vii

Some Advanced Features .179
Child Selector .180
Sibling Selector .181
Attribute Selector .181
Creating Content .182
Importing Style Sheets .182

CSS and XML Editors .182
Text Editor .183
Tree-Based Editor .183
WYSIWYG Editors .184

XSLFO .185
XSLT and CSS .185
XSLFO .187

7 The Parser and DOM .191
What Is a Parser? .191

Parsers .192
Validating and Nonvalidating Parsers 193

The Parser and the Application .193
The Architecture of an XML Program 193
Object-Based Interface .194
Event-Based Interface .196
The Need for Standards .197

Document Object Model .198
Getting Started with DOM .198

A DOM Application .199
DOM Node .202
Document Object .203
Walking the Element Tree .204
Element Object .206
Text Object .206

Managing the State .207
A DOM Application That Maintains the State 208

Attributes .210
NamedNodeMap .217
Attr .217
A Note on Structure .218

Common Errors and How to Solve Them 218
XML Parsers Are Strict .218
Error Messages .219
XSLT Common Errors .220

DOM and Java .220
DOM and IDL .220
A Java Version of the DOM Application 221
Two Major Differences .223
The Parser .224

viii

01 2429 FM 11/12/99 1:00 PM Page viii

DOM in Applications .225
Browsers .225
Editors .229
Databases .229

8 Alternative API: SAX .231
Why Another API? .231

Object-Based and Event-Based Interfaces 232
Event-Based Interfaces .233
Why Use Event-Based Interfaces? 236

SAX: The Alternative API .237
Getting Started with SAX .237
Compiling the Example .241

SAX Interfaces and Objects .242
Main SAX Events .242
Parser .242
ParserFactory .243
InputSource .243
DocumentHandler .243
AttributeList .244
Locator .245
DTDHandler .246
EntityResolver .246
ErrorHandler .246
SAXException .246

Maintaining the State .247
A Layered Architecture .260
States .261
Transitions .262
Lessons Learned .265

Flexibility .265
Build for Flexibility .265
Enforce a Structure .266

9 Writing XML .269
The Parser Mirror .269
Modifying a Document with DOM .270

Inserting Nodes .274
Saving As XML .276

DOM Methods to Create and Modify Documents 277
Document .277
Node .277
CharacterData .278
Element .278
Text .279

Creating a New Document with DOM .279
Creating Nodes .281
Creating the Top-Level Element .282

ix

01 2429 FM 11/12/99 1:00 PM Page ix

Using DOM to Create Documents .283
Creating Documents Without DOM .283

A Non-DOM Data Structure .288
Writing XML .289
Hiding the Syntax .290

Creating Documents from Non-XML Data Structures 291
Doing Something with the XML Documents 292

Sending the Document to the Server 292
Saving the Document .295

Writing with Flexibility in Mind .296
Supporting Several DTDs with XSLT 296
Calling XSLT .303
Which Structure for the Document? 304
XSLT Versus Custom Functions .304

10 Modeling for Flexibility .307
Structured and Extensible .307

Limiting XML Extensibility .308
Building on XML Extensibility .312
Lessons Learned .321

XLink .323
Simple Links .323
Extended Links .326
XLink and Browsers .327

Signature .327
The Right Level of Abstraction .330

Destructive and Nondestructive Transformations 330
Mark It Up! .334
Avoiding Too Many Options .336

Attributes Versus Elements .339
Using Attributes .340
Using Elements .341
Lessons Learned .342

11 N-Tiered Architecture and XML .345
What Is an N-Tiered Application? .345

Client/Server Applications .346
3-Tiered Applications .347
N-Tiers .348

The XCommerce Application .348
Simplifications .349
Shop .349
XML Server .353

How XML Helps .356
Middleware .356
Common Format .357

x

01 2429 FM 11/12/99 1:00 PM Page x

XML for the Data Tiers .359
Extensibility .359
Scalability .361
Versatility .365

XML on the Middle Tier .366
Client .372

Server-Side Programming Language .375
Perl .376
JavaScript .376
Python .377
Omnimark .377
Java .377

12 Putting It All Together: An e-Commerce Example 381
Building XCommerce .381

Classpath .381
Configuration File .382
Directories .383
Compiling and Running .383
URLs .384
Database .384

The Middle Tier .386
MerchantCollection .393
Merchant .397
Product .404
Checkout .407

Encapsulating XML Tools .417
The Data Tier .429
Viewer and Editor .444

Appendix A: Crash Course on Java .457
Java in Perspective .457

Server-Side Applications .458
Components of the Server-Side Applications 458

Downloading Java Tools .459
Java Environment .459
XML Components .460
Servlet Engine .460

Your First Java Application .461
Flow of Control .464
Variables .465
Class .465
Creating Objects .466
Accessing Fields and Methods .466
Static .466
Method and Parameters .467
Constructors .467
Package .468

xi

01 2429 FM 11/12/99 1:00 PM Page xi

Imports .468
Access Control .468
Comments and Javadoc .469
Exception .470

Servlets .472
Your First Servlet .473

Inheritance .476
doGet() .477

More Java Language Concepts .478
This and Super .478
Interfaces and Multiple Inheritance 479
Understanding the Classpath .480
JAR Files .481
Java Core API .482

Glossary .485
Index .489

xii

01 2429 FM 11/12/99 1:00 PM Page xii

Dedication
To Pascale for her never-failing trust and patience.

Acknowledgments
This book is an important station on a long journey. I would like to thank all
the people who have helped me and trusted me along the way. In chronological
order, Ph. Capelle, who helped a confused student; Ph. van Bastelaer and
J. Berge, who were curious about SGML; H. Karunaratne and K. Kaur and the
folks at Sitpro, who showed me London; S. Vincent, who suggested I get serious
about writing; V. D’Haeyere, who taught me everything about the Internet;
Ph. Vanhoolandt, who published my first article; M. Gonzalez, N. Hada,
T. Nakamura, and the folks at Digital Cats, who published my first U.S. papers;
S. McLoughlin, who helps with the newsletter; and T. Green, who trusted me
with this book.

Thanks the XML/EDI Group and, in particular, M. Bryan, A. Kotok, B. Peat,
and D. Webber.

Special thanks to my mother for making me curious.

Writing a book is a demanding task, both for a business and for a family.
Thanks to my customers for understanding and patience when I was late.
Special thanks to Pascale for not only showing understanding, but also for
encouraging me!

xiii

01 2429 FM 11/12/99 1:00 PM Page xiii

About the Author
Benoît Marchal runs the consulting company, Pineapplesoft, which specializes
in Internet applications, particularly e-commerce, XML, and Java. He has
worked with major players in Internet development such as Netscape and
EarthWeb, and is a regular contributor to developer.com and other Internet
publications.

In 1997, he cofounded the XML/EDI Group, a think tank that promotes the
use of XML in e-commerce applications. Benoît frequently leads corporate
training on XML and other Internet technologies. You can reach him at
bmarchal@pineapplesoft.com.

xiv

01 2429 FM 11/12/99 1:00 PM Page xiv

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator.
We value your opinion and want to know what we’re doing right, what we could
do better, what areas you’d like to see us publish in, and any other words of wis-
dom you’re willing to pass our way.

As a Publisher for Que, I welcome your comments. You can fax, email, or write
me directly to let me know what you did or didn’t like about this book—as well
as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of
this book, and that due to the high volume of mail I receive, I might not be able
to reply to every message.

When you write, please be sure to include this book’s title and author as well as
your name and phone or fax number. I will carefully review your comments and
share them with the author and editors who worked on the book.

Fax: 317-581-4666

Email: que.programming@macmillanusa.com

Mail: John Pierce
Publisher
Que-Programming
201 West 103rd Street
Indianapolis, IN 46290 USA

xv

01 2429 FM 11/12/99 1:00 PM Page xv

01 2429 FM 11/12/99 1:00 PM Page xvi

Introduction

The by Example Series
How does the by Example series make you a better programmer? The by
Example series teaches programming using the best method possible. After
a concept is introduced, you’ll see one or more examples of that concept in use.
The text acts as a mentor by figuratively looking over your shoulder and show-
ing you new ways to use the concepts you just learned. The examples are
numerous. While the material is still fresh, you see example after example
demonstrating the way you use the material you just learned.

The philosophy of the by Example series is simple: The best way to teach
computer programming is using multiple examples. Command descriptions,
format syntax, and language references are not enough to teach a newcomer
a programming language. Only by looking at many examples in which new
commands are immediately used and by running sample programs can pro-
gramming students get more than just a feel for the language.

Who Should Use This Book
XML by Example is intended for people with some basic HTML coding experi-
ence. If you can write a simple HTML page and if you know the main tags (such
as <P>, <TITLE>, <H1>), you know enough HTML to understand this book. You
don’t need to be an expert, however.

Some advanced techniques introduced in the second half of the book (Chapter 7
and later) require experience with scripting and JavaScript. You need to under-
stand loops, variables, functions, and objects for these chapters. Remember
these are advanced techniques, so even if you are not yet a JavaScript wizard,
you can pick up many valuable techniques in the book.

This book is for you if one of the following statements is true:

• You are an HTML whiz and want to move to the next level in
Internet publishing.

• You publish a large or dynamic document base on the Web, on CD-
ROM, in print, or by using a combination of these media, and you
have heard XML can simplify your publishing efforts.

• You are a Web developer, so you know Java, JavaScript, or CGI
inside out, and you have heard that XML is simple and enables
you to do many cool things.

02 2429 Intro 11/12/99 1:09 PM Page 1

• You are active in electronic commerce or in EDI and you want to
learn what XML has to offer to your specialty.

• You use software from Microsoft, IBM, Oracle, Corel, Sun, or any of
the other hundreds of companies that have added XML to their prod-
ucts, and you need to understand how to make the best of it.

You don’t need to know anything about SGML (a precursor to XML) to under-
stand XML by Example. You don’t need to limit yourself to publishing; XML by
Example introduces you to all applications of XML, including publishing and
nonpublishing applications.

This Book’s Organization
This book teaches you about XML, the eXtensible Markup Language. XML is a
new markup language developed to overcome limitations in HTML.

XML exists because HTML was successful. Therefore, XML incorporates many
successful features of HTML. XML also exists because HTML could not live up
to new demands. Therefore, XML breaks new ground when it is appropriate.

This book takes a hands-on approach to XML. Ideas and concepts are intro-
duced through real-world examples so that you not only read about the concepts
but also see them applied. With the examples, you immediately see the benefits
and the costs associated with XML.

As you will see, there are two classes of applications for XML: publishing and
data exchange. Data exchange applications include most electronic commerce
applications. This book draws most of its examples from data exchange applica-
tions because they are currently the most popular. However, it also includes a
very comprehensive example of Web site publishing.

I made some assumptions about you. I suppose you are familiar with the Web,
insofar as you can read, understand, and write basic HMTL pages as well as
read and understand a simple JavaScript application. You don’t have to be a
master at HTML to learn XML. Nor do you need to be a guru of JavaScript.

Most of the code in this book is based on XML and XML style sheets. When pro-
gramming was required, I used JavaScript as often as possible. JavaScript,
however, was not appropriate for the final example so I turned to Java.

You don’t need to know Java to understand this book, however, because there is
very little Java involved (again, most of the code in the final example is XML).
Appendix A, “Crash Course on Java,” will teach you just enough Java to under-
stand the examples.

2 Introduction

02 2429 Intro 11/12/99 1:09 PM Page 2

Conventions Used in This Book
Examples are identified by the icon shown at the left of this sentence:

Listing and code appears in monospace font, such as

<?xml version=”1.0”?>

N O T E
Special notes augment the material you read in each chapter. These notes clarify concepts
and procedures.

T I P
You’ll find numerous tips offering shortcuts and solutions to common problems.

C A U T I O N
The cautions warn you about pitfalls that sometimes appear when programming in XML.
Reading the caution sections will save you time and trouble.

What’s Next
XML was introduced to overcome the limitations of HTML. Although the two
will likely coexist in the foreseeable future, the importance of XML will only
increase. It is important that you learn the benefits and limitations of XML so
that you can prepare for the evolution.

Please visit the by Example Web site for code examples or additional material
associated with this book:

<http://www.quecorp.com/series/by_example/>

Turn to the next page and begin learning XML by examples today!

3Introduction

E X A M P L E

02 2429 Intro 11/12/99 1:09 PM Page 3

03 2429 CH01 2.29.2000 2:18 PM Page 4

1

The XML Galaxy
This chapter introduces you to XML. It tells you the why and what: Why
was XML developed and what is XML good at? Before we turn to how
to use XML, we need to understand whether XML is an answer to your
problems.

In this chapter, you will learn the essential concepts behind XML:

• which problems XML solves; in other words, what is XML good at;

• what is a markup language and what is the relationship between
XML, HTML, and SGML;

• how and why XML was developed;

• typical applications of XML, with examples;

• the benefits of using XML when compared to HTML. Where is XML
better than HTML?

03 2429 CH01 2.29.2000 2:18 PM Page 5

Introduction
XML stands for the eXtensible Markup Language. It is a new markup lan-
guage, developed by the W3C (World Wide Web Consortium), mainly to
overcome limitations in HTML. The W3C is the organization in charge of
the development and maintenance of most Web standards, most notably
HTML. For more information on the W3C, visit its Web site at www.w3.org.

HTML is an immensely popular markup language. According to some stud-
ies there are 800 million Web pages, all based on HTML. HTML is sup-
ported by thousands of applications including browsers, editors, email
software, databases, contact managers, and more.

Originally, the Web was a solution to publish scientific documents. Today it
has grown into a full-fledged medium, equal to print and TV. More impor-
tantly, the Web is an interactive medium because it supports applications
such as online shops, electronic banking, and trading and forums.

To accommodate this phenomenal popularity, HTML has been extended
over the years. Many new tags have been introduced. The first version of
HTML had a dozen tags; the latest version (HTML 4.0) is close to 100 tags
(not counting browser-specific tags).

Furthermore, a large set of supporting technologies also has been intro-
duced: JavaScript, Java, Flash, CGI, ASP, streaming media, MP3, and
more. Some of these technologies were developed by the W3C whereas
others were introduced by vendors.

However, everything is not rosy with HTML. It has grown into a complex
language. At almost 100 tags, it is definitively not a small language. The
combinations of tags are almost endless and the result of a particular com-
bination of tags might be different from one browser to another.

Finally, despite all these tags already included in HTML, more are needed.
Electronic commerce applications need tags for product references, prices,
name, addresses, and more. Streaming needs tags to control the flow of
images and sound. Search engines need more precise tags for keywords and
description. Security needs tags for signing. The list of applications that
need new HTML tags is almost endless.

However, adding even more tags to an overblown language is hardly a sat-
isfactory solution. It appears that HTML is already on the verge of collaps-
ing under its own weight, so why continue adding tags?

Worse, although many applications need more tags, some applications
would greatly benefit if there were less, not more, tags in HTML. The W3C
expects that by the year 2002, 75% of surfers won’t be using a PC. Rather,
they will access the Web from a personal digital assistant, such as the pop-
ular PalmPilot, or from so-called smart phones.

6 Chapter 1: The XML Galaxy

03 2429 CH01 2.29.2000 2:18 PM Page 6

These machines are not as powerful as PCs. They cannot process a complex
language like HTML, much less a version of HTML that would include
more tags.

Another, but related, problem is that it takes many tags to format a page.
It is not uncommon to see pages that have more markup than content!
These pages are slow to download and to display.

In conclusion, even though HTML is a popular and successful markup lan-
guage, it has some major shortcomings. XML was developed to address
these shortcomings. It was not introduced for the sake of novelty.

XML exists because HTML was successful. Therefore, XML incorporates
many successful features of HTML. XML also exists because HTML could
not live up to new demands. Therefore, XML breaks new ground where it
is appropriate.

It is difficult to change a successful technology like HTML so, not surpris-
ingly, XML has raised some level of controversy.

Let’s make it clear: XML is unlikely to replace HTML in the near or
medium-term. XML does not threaten the Web but introduces new possibil-
ities. Work is already under way to combine XML and HTML in XHTML,
an XML version of HTML. At the time of this writing, XHTML version 1.0
is not finalized yet. However, it is expected that XHTML will soon be
adopted by the W3C.

Some of the areas where XML will be useful in the near-term include:

• large Web site maintenance. XML would work behind the scene to
simplify the creation of HTML documents

• exchange of information between organizations

• offloading and reloading of databases

• syndicated content, where content is being made available to different
Web sites

• electronic commerce applications where different organizations collab-
orate to serve a customer

• scientific applications with new markup languages for mathematical
and chemical formulas

• electronic books with new markup languages to express rights and
ownership

• handheld devices and smart phones with new markup languages opti-
mized for these “alternative” devices

7Introduction

03 2429 CH01 2.29.2000 2:18 PM Page 7

This book takes a “hands-on” approach to XML. It will teach you how to
deploy XML in your environment: how to decide where XML fits and how
to best implement it. It is illustrated with many real-world examples.

As you will see, there are two classes of applications for XML: publishing
and data exchange. This book draws most of its examples from data
exchange applications because they are currently the most popular.
However, it also includes a very comprehensive example of Web site pub-
lishing.

I make some assumptions about you. I assume you are familiar with the
Web, insofar that you can read, understand, and write basic HMTL pages
as well as read and understand a simple JavaScript application. You don’t
have to be a master at HTML to learn XML; nor do you need to be a guru
of JavaScript.

Most of the code in this book is based on XML and its companion stan-
dards. When programming was required, I used JavaScript as often as pos-
sible. JavaScript, however, was not appropriate for the final example so I
turned to Java.

You don’t need to know Java to read this book. There is very little Java
involved (again, most of the code in the final example is based on tech-
niques that you will learn in this book) and Appendix A, “Crash Course
on Java,” will teach you just enough Java to understand the examples.

A First Look at XML
The idea behind XML is deceptively simple. It aims at answering the con-
flicting demands that arrive at the W3C for the future of HTML.

On one hand, people need more tags. And these new tags are increasingly
specialized. For example, mathematicians want tags for formulas. Chemists
also want tags for formulas but they are not the same.

On the other hand, authors and developers want fewer tags. HTML is
already so complex! As handheld devices gain in popularity, the need for a
simpler markup language also is apparent because small devices, like the
PalmPilot, are not powerful enough to process HMTL pages.

How can you have both more tags and fewer tags in a single language?
To resolve this dilemma, XML makes essentially two changes to HTML:

• It predefines no tags.

• It is stricter.

8 Chapter 1: The XML Galaxy

03 2429 CH01 2.29.2000 2:18 PM Page 8

No Predefined Tags
Because there are no predefined tags in XML, you, the author, can create
the tags that you need. Do you need a tag for price? Do you need a tag for a
bold hyperlink that floats on the right side of the screen? Make them:
<price currency=”usd”>499.00</price>

<toc xlink:href=”/newsletter”>Pineapplesoft Link</toc>

The <price> tag has no equivalent in HTML although you could simulate
the <toc> tag through a combination of table, hyperlink, and bold:
<TABLE>

<TR>

<TD><!-- main text here --></TD>

<TD>Pineapplesoft Link</TD>

</TR>

</TABLE>

This is the X in XML. XML is extensible because it predefines no tags but
lets the author create tags that are needed for his or her application.

This is simple but it opens many questions such as

• How does the browser know that <toc> is equivalent to this combina-
tion of table, hyperlink, and bold?

• Can you compare different prices?

• What about the current generation of browsers?

• How does this simplify Web site maintenance?

We will address these and many other questions in detail in the following
chapters of the book. Briefly the answers are

• The browsers use a style sheet: See Chapter 5, “XSL Transformation,”
and Chapter 6, “XSL Formatting Objects and Cascading Style Sheet.”

• You can compare prices: See Chapter 7, “The Parser and DOM,” and
Chapter 8, “Alternative API: SAX.”

• XML can be made compatible with the current generation of browsers:
See Chapter 5.

• XML enables you to concentrate on more stable aspects of your docu-
ment: See Chapter 5.

9A First Look at XML

E X A M P L E

03 2429 CH01 2.29.2000 2:18 PM Page 9

Stricter
HTML has a very forgiving syntax. This is great for authors who can be as
lazy as they want, but it also makes Web browsers more complex. According
to some estimates, more than 50% of the code in a browser handles errors
or sloppiness on the author’s part.

However, authors increasingly use HMTL editors so they don’t really care
how simple and forgiving the syntax is.

Yet, browsers are growing in size and are becoming generally slower. The
speed factor is a problem for every surfer. The size factor is a problem for
owners of handheld devices who cannot afford to download 10Mb browsers.

Therefore, it was decided that XML would adopt a very strict syntax. A
strict syntax results in smaller, faster, and lighter browsers.

A First Look at Document Structure
XML is all about document structure. This section looks into the issue of
structured documents.

C A U T I O N
Don’t be confused by the vocabulary: XML is not just a solution to publishing Web
pages.

XML clearly has its roots in publishing: technical documentation, books, letters, Web
pages, and more.

The XML vocabulary dates back to publishing applications. For example, an XML file is
referred to as an XML document. Likewise, to manipulate an XML document, you are
likely to apply a style sheet, even though you might not be formatting the document.
Relationships between documents are expressed through links, even though they might
not be hyperlinks.

The vocabulary is the source of much confusion because it seems to restrict XML to
publishing. This is unfortunate because it has turned off many people. So I urge you to
keep an open mind, as you will see XML documents are more than what you would typi-
cally think of as documents.

To illustrate document structure, I will use the fictitious memo in Listing
1.1 as an example.
Listing 1.1: A Fictitious Memo

INTERNAL MEMO

From: John Doe

To: Jack Smith

Regarding: XML at WhizBang

10 Chapter 1: The XML Galaxy

E X A M P L E

03 2429 CH01 2.29.2000 2:18 PM Page 10

Have you heard of this new technology, XML? It looks promising.

It is similar to HTML but it is extensible. All the big names

(Microsoft, IBM, Oracle) are backing it.

We could use XML to simplify our e-commerce and launch new

services. It is also useful for the Web site: You complained it

was a lot of work; apparently, XML can simplify the maintenance.

Check this Web site <http://www.w3.org/XML> for more information.

Also visit Que (<http://www.mcp.com>). It has just released

“XML by Example” with lots of useful information and some great

examples. I have already ordered two copies!

John

If we look at the structure of this memo, we see it is not a monolithic entity.
The memo is made of at least three distinct elements:

• the title

• the header, which states the sender and recipient names as well as the
subject

• the body text

These elements are organized in relation to one another, following a struc-
ture. For example, the title names the memo and it is followed with the
header.

If we examine the memo more closely, we find that the body text itself con-
sists of various elements, namely

• three paragraphs

• several URLs

• a signature

We could continue this decomposition process and recognize smaller ele-
ments like sentences, words, or even characters. However, these smaller
elements usually add little information on the structure of the document.

The structure we have just identified is independent from the appearance
of the memo. For example, the memo could have been written in HTML. It
would have resulted in a nicer-looking document, as illustrated in Figure
1.1, but would have the same structure.

11A First Look at Document Structure

E X A M P L E

03 2429 CH01 2.29.2000 2:18 PM Page 11

Figure 1.1: The memo is nicely formatted in HTML.

Figure 1.1 is just one possible formatting. The same memo could have been
formatted completely differently, as illustrated by Figure 1.2.

12 Chapter 1: The XML Galaxy

Figure 1.2: A different appearance

What is important to notice is that the memo can look completely different
and yet it still follows the same structure: The appearance has no impact
on the structure. In other words, whether the subject, sender, and recipient

03 2429 CH01 2.29.2000 2:18 PM Page 12

are enclosed in a frame or as a bulleted list does not impact the structure.

In Listing 1.1, Figure 1.1, and Figure 1.2, the memo consists of

• a title

• a header containing

• the sender

• the recipient

• a subject

• the body text containing

• three paragraphs

• several URLs

• a signature

and the relationship between those elements remains unchanged.

Does it mean that structure and appearance are totally unrelated? Not at
all! Ideally, a text is formatted to expose its structure to the reader because
good formatting, when constantly applied, is a real help to the reader.

In our case, it is more pleasant to read the HTML versions of the memo
rather than the text because the frame and bold characters make it easier
to distinguish the header from the body.

For the same reasons, it is common practice to print chapter titles and
other headings in bold. When we read, we come to rely on those typo-
graphic conventions: They help us build a mental image of the document
structure. Also, they are particularly valuable when we leaf through a docu-
ment.

Likewise, magazines and newspapers try to build a visual style. They select
a set of fonts and apply them consistently over the years so that we should
be able to recognize our favorite magazine only by its typesetting options.

It gives comfort to the regular reader and helps differentiate from the com-
petition. For similar reasons, companies tend to enforce a corporate style
with logos and common letterheads.

The moral of this section, and the key to understanding XML, is that the
structure of a document is the foundation from which the appearance is
deduced. Although I have illustrated it with only a memo, this holds true
for all sorts of documents including technical documentation, books, letters,
emails, reports, magazines, Web pages, and more.

13A First Look at Document Structure

03 2429 CH01 2.29.2000 2:18 PM Page 13

Most document exchange standards concentrate on the actual appearance
of a document. They take great pains to ensure almost identical display on
various platforms.

XML uses a different approach and records the structure of documents from
which the formatting is automatically deduced. The difference might seem
trivial but we will see it has far reaching implications.

Markup Language History
HTML stands for Hypertext Markup Language; XML is the eXtensible
Markup Language. There is another standard called SGML, which stands
for the Standard Generalized Markup Language. Do you see the pattern
here?

All three languages are markup languages. What exactly is a markup lan-
guage? What problem does it solve?

The easiest way to understand markup languages in general, and XML in
particular, is probably a historical study of electronic markup; that is, the
progression from procedural markup to generalized markup through
generic coding.

This requires a brief discussion of SGML, the internal standard underlying
HTML and XML. I promise that I will limit references to SGML in this
book. However, I cannot completely hide the relationship between XML and
SGML.

Before we rush into the hows and whys, let me define markup. In an elec-
tronic document, the markup is the codes, embedded with the document
text, which store the information required for electronic processing, like
font name, boldness or, in the case of XML, the document structure. This is
not specific to XML. Every electronic document standard uses some sort of
markup.

Mark-Up
Mark-up originates in the publishing industry. In traditional publishing,
the manuscript is annotated with layout instructions for the typesetter.
These handwritten annotations are called mark-up.

Mark-up is a separate activity that takes place after writing and before
typesetting.

Procedural Markup
Similarly, word processing requires the user to specify the appearance of
the text. For example, the user selects a typeface and its boldness. The user
also can place a piece of text at a given position on the page and more. This
information is called markup and is stored as special codes with the text.

14 Chapter 1: The XML Galaxy

03 2429 CH01 2.29.2000 2:18 PM Page 14

N O T E
Electronic markup is spelled as one word to distinguish it from traditional handwritten
mark-up.

Practically, the user selects commands in menus to add formatting instruc-
tions to the text. The formatting instructions tell the printer whether to
print in bold or when to use another typeface.

To select the formatting instructions, the user implicitly analyzes the struc-
ture of its document; that is, he identifies each separate meaningful ele-
ment.

He then determines the commands that need to be applied to produce the
format desired for that type of element and he selects the appropriate com-
mands.

Please note that, once again, the document structure is the starting point
from which actual formatting is deduced. However, this is an unconscious
process.

This process is often referred to as procedural markup because the markup
is effectively some procedure for the output device. It closely parallels the
traditional mark-up activity. The main difference being that markup is
stored electronically.

The Rich Text Format (RTF), developed by Microsoft but supported by most
word processors, is a procedural markup. Listing 1.2 is the memo in RTF.
You need not worry about all the codes used in this document but it is clear
that instructions (markup) have been added to the text to describe how it
should be formatted.
Listing 1.2: The Memo in RTF

{\rtf1\ansi\ansicpg1252\deff0\deflang1033\deflangfe1033{\fonttbl

{\f0\froman\fprq2\fcharset0 Garamond;}{\f1\froman\fprq2\fcharset0

Times New Roman;}{\f2\fscript\fprq2\fcharset0 Lucida Handwriting;}}

{\colortbl ;\red0\green0\blue255;}

\uc1\pard\sb100\sa100\nowidctlpar\lang3081\ulnone\b\f0\fs36 XML

at WhizBang\b0\fs24\par

From:\tab John Doe\line To:\tab Jack Smith\par

Have you heard of this new technology, XML? It looks promising.

It is similar to HTML but it is extensible. All the big names

(Microsoft, IBM, Oracle) are backing it.\f1\par

\f0 We could use XML to simplify our e-commerce and launch new

services. It is also useful for the web site: you complained it

was a lot of work, apparently XML can simplify the maintenance.

15Markup Language History

E X A M P L E

continues

03 2429 CH01 2.29.2000 2:18 PM Page 15

Listing 1.2: continued

\f1\par

\f0 Check this web site <http://www.w3.org/XML> for more

information. Also visit Que (\cf1\ul <http://www.mcp.com>

\cf0\ulnone). They have just released “XML by Example”

with lots of useful information and some great examples.

I have already ordered two copies!\f1\par

\i\f2 John\i0\f1\par

}

Figure 1.3 shows the RTF memo loaded in a word processor.

16 Chapter 1: The XML Galaxy

O U T P U T

Figure 1.3: The RTF memo in a word processor

This approach has three major problems:

• It does not record the structure of the document. We see the user
deduces the document appearance from its structure but it records
only the result of the process. Therefore, information about the struc-
ture is lost.

• It is inflexible. Any change to the formatting rules implies manually
changing the document. Also, the markup is more or less system
dependent, which reduces portability. Relying on the availability of a
particular typeface or on the output device being a certain printer
reduces portability.

• It is an inherently slow process. It is also error-prone: It is easy to get
confused and incorrectly format a document.

03 2429 CH01 2.29.2000 2:18 PM Page 16

Generic Coding
Markup evolved into generic coding with the introduction of macros.
Macros replace the controls with calls to external formatting procedures.
A generic identifier (GI) or tag is attached to each text element and format-
ting rules are further associated with tags. A formatter processes the text
and produces a document in the format of the output device.

TeX is a good example of generic coding. Listing 1.3 is the memo in TeX.

Listing 1.3: The Memo in TeX

% memo.tex

\nopagenumbers

\noindent John Doe\par

\noindent Jack Smith\par

\noindent XML at WhizBang\par

\smallskip

Have you heard of this new technology, XML? It looks promising.

It is similar to HTML but it is extensible. All the big names

(Microsoft, IBM, Oracle) are backing it.\par

We could use XML to simplify our e-commerce and launch new

services. It is also useful for the web site: you complained it

was a lot of work, apparently XML can simplify the maintenance.

Check this web site {\url http://www.w3.org/XML} for more

information.

Also visit Que ({\url http://www.mcp.com}).\par

They have just released “XML by Example” with lots of useful

information and some great examples. I have already ordered

two copies!\par

John\par

\bye

The benefits of generic coding over procedural markup are twofold:

• It achieves higher portability and is more flexible. To change the
appearance of the document it suffices to adapt the macro. By editing
one macro, the change is automatically reported throughout the docu-
ment. In particular, it does not require reencoding the markup, which
is a time-consuming and error-prone activity.

• The markup is closer to describing the structure.

17Markup Language History

E X A M P L E

03 2429 CH01 2.29.2000 2:18 PM Page 17

Users tend to give significant names to the tags—for example, ‘Heading’ is
preferred to ‘X12’, clearly recognizing the predominance of the structure
over the formatting.

The good news is that it is now possible to automatically process the
document—for example, it would be possible to compile an index of URLs.

Standard Generalized Markup Language
The Standard Generalized Markup Language (SGML) extends generic cod-
ing. Furthermore, it is an international standard published by the ISO
(International Standard Organization). It is based on the early work done
by Dr. Charles Goldfarb from IBM.

Dr. Goldfarb was the inventor of the concepts behind SGML. He was a tech-
nical leader of the team that developed SGML.

SGML is similar to generic coding but with two additional characteristics:

• The markup describes the document’s structure, not the document
appearance.

• The markup conforms to a model, which is similar to a database
schema. This means that it can be processed by software or stored in
a database.

SGML is not a standard structure that every document needs to follow. In
other words, it does not define what a title or a paragraph is. In fact, it is
unrealistic to believe that a single document structure can satisfy the needs
of all authors. Technical documentation, books, letters, dictionaries, Web
pages, timetables, and memos, to name only a few, are too different to fit in
a single canvas without putting unacceptable constraints on the authors.

The SGML approach is not to impose its own tag set but to propose a lan-
guage for authors to describe the structure of their documents and mark
them accordingly. This is the first difference between generic coding and
SGML: The markup describes the structure of the document.

SGML is an enabling standard, not a complete document architecture. The
strength of SGML is that it is a language to describe documents—in many
respects similar to programming languages. It is therefore flexible and open
to new applications.

The document structure is written in a Document Type Definition (DTD)
sometimes also referred to as SGML application. A DTD specifies a set of
elements, their relationships, and the tag set to mark the document. This is
another difference between generic coding and SGML: The markup follows
a model.

18 Chapter 1: The XML Galaxy

03 2429 CH01 2.29.2000 2:18 PM Page 18

Listing 1.4 is the document in SGML. You will recognize the syntax but
none of the tags. HTML is an application of SGML; therefore, the syntax is
familiar. The tags, however, are specific to the structure of this document.
Listing 1.4: The Memo in SGML

<!DOCTYPE memo SYSTEM “memo.dtd”>

<memo>

<header>

<from>John Doe

<to>Jack Smith

<subject>XML at WhizBang

<body>

<para>Have you heard of this new technology, XML? It looks

promising. It is similar to HTML but it is extensible.

All the big names (Microsoft, IBM, Oracle) are backing

it.

<para>We could use XML to simplify our e-commerce and launch

new services. It is also useful for the web site: you

complained it was a lot of work, apparently XML can

simplify the maintenance.

<para>Check this web site <url>http://www.w3.org/XML</url>

for more information. Also visit Que

(<url>http://www.mcp.com</url>). They have just released

“XML by Example” with lots of useful information and some

great examples. I have already ordered two copies!

<signature>John

</memo>

Although SGML does not impose a structure on documents, standard com-
mittees, industry groups, and others build on SGML and describe standard
document structures as SGML applications. Some document structures are
maintained as public standards in the form of SGML DTDs.

Some famous examples are

• HTML is the well-known markup language for Web documents.
Although few HTML authors know about SGML, HTML has been
defined as an SGML DTD.

• CALS standard MIL-M-28001B. CALS (Continuous Acquisition and
Life-cycle Support) is a DoD (U.S. Department of Defense) initiative
to promote electronic document interchange. MIL-M-28001B specifies

19Markup Language History

E X A M P L E

03 2429 CH01 2.29.2000 2:18 PM Page 19

DTDs for technical manuals in the format required for submission to
the DoD.

• DocBook and other DTDs designed by the AAP (Association of
American Publishers) for books, articles, and serials. This was the
first major application of SGML.

Hypertext Markup Language
Without a doubt, the most popular application of SGML is HTML.
Formally, HTML is an application of SGML. In other words, HTML is one
set of tags that follows the rules of SGML. The set of tags defined by HTML
is adapted to the structure of hypertext documents.

1. Listing 1.5 is the memo in HTML.
Listing 1.5: The Memo in HTML

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>

<HTML>

<HEAD><TITLE>WhizBang Memo: XML at WhizBang</TITLE></HEAD>

<BODY>

<TABLE bgcolor=”LIGHTGREY” border=”1” width=”70%”><TR><TD>

<TABLE>

<TR>

<TD colspan=”2”>

XML at WhizBang

</TD>

</TR>

<TR>

<TD>From:</TD>

<TD>John Doe</TD>

</TR>

<TR>

<TD>To:</TD>

<TD>Jack Smith</TD>

</TR>

</TABLE>

</TD></TR></TABLE>

<P>Have you heard of this new

technology, XML? It looks promising. It is similar

to HTML but it is extensible. All the big names

(Microsoft, IBM, Oracle) are backing it.</P>

20 Chapter 1: The XML Galaxy

E X A M P L E

03 2429 CH01 2.29.2000 2:18 PM Page 20

<P>We could use XML to simplify

our e-commerce and launch new services.

It is also useful for the web site: you complained

it was a lot of work, apparently XML can simplify

the maintenance.</P>

<P>Check this web site

http://www.w3.org/XML

for more information. Also visit Que

(http://www.mcp.com).

They have just released “XML by Example” with lots of

useful information and some great examples. I have

already ordered two copies!</P>

<P><I>John</I></P>

</BODY>

</HTML>

As you can see in Listing 1.5, HTML does not enforce a strict structure; in
fact, HTML enforces very little structure.

HTML has evolved in two contradictory directions. First, many formatting
tags have been introduced so that HTML is now partly a procedural
markup language.

Tags in this category include <CENTER> and . Listing 1.5 clearly shows
that the tags are used to express presentation, not only structure.

2. At the same time, the class attribute and style sheets were added to
HTML. This turns HTML in a generic coding language! Listing 1.6
illustrates the use of class.

Listing 1.6: The Memo in HTML with class

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>

<HTML>

<HEAD>

<TITLE>WhizBang Memo: XML at WhizBang</TITLE>

<STYLE>

.header {

background-color: lightgrey;

}

.subject {

font-family: Garamond;

font-weight: bold;

21Markup Language History

E X A M P L E

continues

03 2429 CH01 2.29.2000 2:18 PM Page 21

Listing 1.6: continued

font-size: larger;

}

.to, .from {

font-family: Garamond;

}

.para { font-family: Garamond; }

.signature {

font-family: “Lucida Handwriting”;

font-style: italic;

}

</STYLE>

</HEAD>

<BODY>

<TABLE CLASS=”header” WIDTH=”70%” BORDER=”1”><TR><TD>

<TABLE>

<TR>

<TD colspan=”2” CLASS=”subject”>

XML at WhizBang

</TD>

</TR>

<TR>

<TD CLASS=”from”>From:</TD>

<TD CLASS=”from”>John Doe</TD>

</TR>

<TR>

<TD CLASS=”to”>To:</TD>

<TD CLASS=”to”>Jack Smith</TD>

</TR>

</TABLE>

</TD></TR></TABLE>

<P CLASS=”para”>Have you heard of this new

technology, XML? It looks promising. It is similar

to HTML but it is extensible. All the big names

(Microsoft, IBM, Oracle) are backing it.</P>

<P CLASS=”para”>We could use XML to simplify

our e-commerce and launch new services.

It is also useful for the web site: you complained

it was a lot of work, apparently XML can simplify

22 Chapter 1: The XML Galaxy

03 2429 CH01 2.29.2000 2:18 PM Page 22

the maintenance.</P>

<P CLASS=”para”>Check this web site

http://www.w3.org/XML

for more information. Also visit Que

(http://www.mcp.com).

They have just released “XML by Example” with lots of

useful information and some great examples. I have

already ordered two copies!</P>

<P CLASS=”signature”>John</P>

</BODY>

</HTML>

Figure 1.4 is the document loaded in a browser. Note that it looks exactly
like Figure 1.1. Figure 1.1 was the document in Listing 1.5. So, procedural
markup and generic coding achieve identical pages.

23Markup Language History

O U T P U T

Figure 1.4: A document with classes in a browser

Without going into the details of Listing 1.6, the classes are associated with
formatting instructions. For example, the class “para” is associated with
.para { font-family: Garamond; }

This says that the typeface must be “Garamond.” In effect, it achieves the
same result as:

03 2429 CH01 2.29.2000 2:18 PM Page 23

...

However, the class is a generic coding, whereas the tag is procedural
coding. Practically, it means that it is possible to change the appearance of
all the paragraphs by changing only the formatting instructions associated
with the para. That’s one line to change as opposed to many tags to
update with a procedural markup.

3. Listing 1.7 illustrates this. It associates different formatting instruc-
tions to the paragraph. Figure 1.5 shows the result in a browser.

Listing 1.7: The Memo in HTML with Different Formatting Instructions

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>

<HTML>

<HEAD>

<TITLE>WhizBang Memo: XML at WhizBang</TITLE>

<STYLE>

.header {

background-color: lightgrey;

}

.subject {

font-family: Garamond;

font-weight: bold;

font-size: larger;

}

.to, .from {

font-family: Garamond;

}

.para {

font-family: “Letter Gothic MT”;

font-size: 16px;

}

.signature {

font-family: “Lucida Handwriting”;

font-style: italic;

}

</STYLE>

</HEAD>

<BODY>

<TABLE CLASS=”header” WIDTH=”70%” BORDER=”1”><TR><TD>

<TABLE>

24 Chapter 1: The XML Galaxy

E X A M P L E

03 2429 CH01 2.29.2000 2:18 PM Page 24

<TR>

<TD colspan=”2” CLASS=”subject”>

XML at WhizBang

</TD>

</TR>

<TR>

<TD CLASS=”from”>From:</TD>

<TD CLASS=”from”>John Doe</TD>

</TR>

<TR>

<TD CLASS=”to”>To:</TD>

<TD CLASS=”to”>Jack Smith</TD>

</TR>

</TABLE>

</TD></TR></TABLE>

<P CLASS=”para”>Have you heard of this new

technology, XML? It looks promising. It is similar

to HTML but it is extensible. All the big names

(Microsoft, IBM, Oracle) are backing it.</P>

<P CLASS=”para”>We could use XML to simplify

our e-commerce and launch new services.

It is also useful for the web site: you complained

it was a lot of work, apparently XML can simplify

the maintenance.</P>

<P CLASS=”para”>Check this web site

http://www.w3.org/XML

for more information. Also visit Que

(http://www.mcp.com).

They have just released “XML by Example” with lots of

useful information and some great examples. I have

already ordered two copies!</P>

<P CLASS=”signature”>John</P>

</BODY>

</HTML>

25Markup Language History

03 2429 CH01 2.29.2000 2:18 PM Page 25

Figure 1.5: The new style in a browser

eXtensible Markup Language
This conflicting evolution of HTML, partly toward procedural markup and
partly toward generic coding, is illustrative of the forces at play behind
HTML.

On one hand, the Web has evolved into a media in its own right, similar to
printed magazines and television. Therefore, people need lots of control
over the formatting so they can produce visually appealing Web sites.

Yet Web sites also have grown in size and it is increasingly difficult to
maintain them. For most organizations, building a Web site follows these
steps:

• The first 20 pages are produced with enthusiasm.

• Somebody (usually from the marketing department) realizes that the
Web site looks terrible.

• A design agency is contracted to redo the appearance of the site and it
manually edits the 20 pages. The site is now three times slower but it
looks great.

• Another 50 pages are added with enthusiasm. They more or less fol-
low the new appearance. As time passes by, they tend to diverge from
the original style.

26 Chapter 1: The XML Galaxy

O U T P U T

03 2429 CH01 2.29.2000 2:18 PM Page 26

• Another design agency is contracted to redo the site. It would be too
expensive to edit the whole site so 30 pages are deleted. The remain-
ing 40 pages are manually edited.

Hopefully, somebody realizes it is a very costly process before another 50
pages are added. If not, the process repeats.

Generic coding was added to HTML to help alleviate this problem.
However, the class attribute is perceived as too limited and has generally
not been very successful.

This problem also was one of the motivations for the development of XML.
It was felt that HTML was increasingly inefficient and a more flexible
mechanism was needed.

One option could have been to turn to SGML. In fact, it was envisioned at
one point. However, it rapidly became evident that SGML was too complex
for the Web. There are options in SGML that are useless in a Web environ-
ment.

Therefore, the solution was to simplify SGML. XML removes all the options
that are not absolutely required in SGML. However, it retains the key prin-
ciple that markup needs to describe the structure of the document.

The result is a simple standard that is almost as powerful as SGML while
being as simple to use as HTML. In fact, simplicity was one of the criteria
during the development of XML. Indeed, it was felt that the original sim-
plicity of HTML had been a major element in its early success.

Today, of course, HTML is no longer simple and, in a way, XML is simpler
than modern HTML.

As already stated, it is very unlikely that HTML will disappear in the pre-
dictable future. Rather, HTML will evolve toward XML. Work is already
under way on an XML version of HTML dubbed XHTML.

Listing 1.8 is the memo in XML. You will notice that it is very similar to
SGML but every element has an end tag. Do not worry about XML syntax
now. We will cover the syntax in greater detail in the next two chapters.
Listing 1.8: The Memo in XML

<?xml version=”1.0”?>

<!DOCTYPE memo SYSTEM “memo.dtd”>

<memo>

<header>

<from>John Doe</from>

<to>Jack Smith</to>

<subject>XML at WhizBang</subject>

27Markup Language History

E X A M P L E

continues

03 2429 CH01 2.29.2000 2:18 PM Page 27

Listing 1.8: continued

</header>

<body>

<para>Have you heard of this new technology, XML? It looks

promising. It is similar to HTML but it is extensible.

All the big names (Microsoft, IBM, Oracle) are backing

it.</para>

<para>We could use XML to simplify our e-commerce and launch

new services. It is also useful for the web site: you

complained it was a lot of work, apparently XML can

simplify the maintenance.</para>

<para>Check this web site <url>http://www.w3.org/XML</url>

for more information. Also visit Que

(<url>http://www.mcp.com</url>). They have just

released “XML by Example” with lots of useful

information and some great examples. I have already

ordered two copies!</para>

<signature>John</signature>

</body>

</memo>

Application of XML
Although I have mentioned in passing that XML is not just for Web site
publishing, all the examples I have given so far are more or less related to
Web publishing. In this section, I will present some of the most popular
applications for XML.

Applications of XML are classified as being of one of the following two
types:

• Document applications manipulate information that is primarily
intended for human consumption.

• Data applications manipulate information that is primarily intended
for software consumption.

The difference between the two types of application is a qualitative one. It
is the same XML standard, it is implemented by using the same tools, but
it serves different goals. This is important because it means you can reuse
tools and experience across a large set of applications.

28 Chapter 1: The XML Galaxy

03 2429 CH01 2.29.2000 2:18 PM Page 28

Document Applications
The first application of XML would be document publishing. The main
advantage of XML in this arena is that XML concentrates on the structure
of the document, and this makes it independent of the delivery medium
(see Figure 1.6).

29Application of XML

Figure 1.6: XML is independent from the medium.

Therefore, it is possible to edit and maintain documents in XML and auto-
matically publish them on different media. The operative word here is auto-
matically.

The ability to target multiple media is becoming increasingly important
because many publications are available online and in print. Also, the Web
is changing very rapidly. What is fashionable this year will be passé next
year so one needs to reformat his site regularly.

Finally, some Web sites are optimized for specific viewers, such as Netscape
or Internet Explorer. This often leads to the development of two or more
versions of the same site: one generic version and one optimized for some
users. If done manually, this is very costly.

For all these reasons, it makes sense to maintain a common version of the
documentation in a media-independent format, such as XML, and to auto-
matically convert it into publishing formats such as HTML, PostScript,
PDF, RTF, and more.

Of course, the more media we need to support and the larger the document,
the more important it is that publishing be automated.

Data Applications
One of the original goals of SGML was to give document management
access to the software tools that had been used to manage data, such as
databases.

With XML, the loop has come to a full circle because XML brings a publish-
ing kind of distribution to data. This leads to the concept of “the application

03 2429 CH01 2.29.2000 2:18 PM Page 29

as the document” where, ultimately, there is no difference between docu-
ments and applications.

Indeed, if the structure of a document can be expressed in XML, as illus-
trated in Figure 1.7, so can the structure of a database, as illustrated in
Figure 1.8.

30 Chapter 1: The XML Galaxy

Figure 1.7: The structure of a document in XML

Figure 1.8: The structure of a database in XML

As an example, consider Table 1.1. which is a list of products and prices as
they would be stored in a relational database. Listing 1.9 is the same list of
products in XML.

Table 1.1: A list of products in a relational database

Identifier Name Price
p1 XML Editor $499.00

p2 DTD Editor $199.00

p3 XML Book $19.99

p4 XML Training $699.00

E X A M P L E

03 2429 CH01 2.29.2000 2:18 PM Page 30

Listing 1.9: A List of Products in XML

<?xml version=”1.0”?>

<products>

<product id=”p1”>

<name>XML Editor</name>

<price>499.00</price>

</product>

<product id=”p2”>

<name>DTD Editor</name>

<price>199.00</price>

</product>

<product id=”p3”>

<name>XML Book</name>

<price>19.99</price>

</product>

<product id=”p4”>

<name>XML Training</name>

<price>699.00</price>

</product>

</products>

In this context, XML is used to exchange information between organiza-
tions. The XML Web is a large database on which applications can tap
(see Figure 1.9).

31Application of XML

Figure 1.9: Applications exchanging data over the Web

This can be viewed as an extension for extranets. The idea behind an
extranet is that one organization publishes some of its data on the Web for
its partners.

For example, an organization will publish its price list on its Web site. In
some industries, such as electronics, the price list is very dynamic. Prices

03 2429 CH01 2.29.2000 2:18 PM Page 31

can change several times during a month. If the information is available on
a Web site, customers can always access the latest, most up-to-date infor-
mation.

Currently, the price list is published in HTML—that is, intended for view-
ing by a human. This is acceptable if you have few providers with few prod-
ucts but as soon as you have many providers or many products, you want
an automated solution.

With XML, software can automatically visit the price list, extract the price,
and update the information in your own database. This is shown in the top
half of Figure 1.9. It requires a markup language that does not concentrate
on appearance but on structure.

Companion Standards
The value of XML is not that it is a markup language but that it is a stan-
dard markup language. It wouldn’t be difficult to create your own markup
language using your own convention. However, by adopting XML, you buy
into a growing community supported by a large range of standards and
products.

This means it will be easier to find support in the form of books, articles,
and services, as well as software to create, manipulate, store, and exchange
XML documents.

There is a sort of positive loop at play here: Because XML is standardized,
more vendors are willing to support it. This leads more people to adopt it.
A large market means that more vendors will propose XML tools. This, in
turn, attracts more users, which, again, attracts new vendors. And so on,
and so on.

The title for this chapter, “The XML Galaxy,” reflects my view that XML is
more than a markup language. It is a whole range of tools that you can put
to work in your environment.

In particular, the W3C has developed a number of standards that comple-
ment XML. These standards are often referred to as “XML companion
standards.”

It is not my intention in this chapter to introduce these standards compre-
hensively, but I would like to give you a feeling for what they have to offer.
Therefore, I will point to some of the major companion standards.

This is not a complete list. New standards are regularly being introduced.

32 Chapter 1: The XML Galaxy

03 2429 CH01 2.29.2000 2:18 PM Page 32

XML Namespace
XML Namespace is often an overlooked companion standard although it is
second to none in importance. Namespace associates an owner with ele-
ments.

This enables extensibility because it means an organization can add to
existing elements and clearly label who is responsible for the extension.
This prevents name conflicts and is the only way to enable reuse of stan-
dard structures.

✔ XML namespaces are covered in more detail in Chapter 4, “Namespaces,” page 112.

Listing 1.10 is an address book in XML that uses namespaces to reuse a
standard definition for addresses.
Listing 1.10: Using Namespaces to Reuse the Address

<?xml version=”1.0”?>

<directory

xmlns=”http://catwoman.pineapplesoft.com/directory/1.0”

xmlns:adr=”http://catwoman.pineapplesoft.com/address/1.0”>

<adr:address>

<adr:name>John Doe</adr:name>

<adr:street>34 Fountain Square Plaza</adr:street>

<adr:region>OH</adr:region>

<adr:postal-code>45202</adr:postal-code>

<adr:locality>Cincinnati</adr:locality>

<adr:country>US</adr:country>

<adr:tel>513-555-8889</adr:tel>

<adr:email>jdoe@emailaholic.com</adr:email>

</adr:address>

<adr:address>

<adr:name>Jack Smith</adr:name>

<adr:tel>513-555-3465</adr:tel>

<adr:email>jsmith@emailaholic.com</adr:email>

</adr:address>

</directory>

Style Sheets
XML is supported by two style sheet languages: XSL (XML Stylesheet
Language) and CSS (Cascading Style Sheet). Style sheets are probably the

33Companion Standards

E X A M P L E

03 2429 CH01 2.29.2000 2:18 PM Page 33

most widely discussed companion standards. They specify how XML docu-
ments should be rendered onscreen, on paper, or in an editor. XSL is more
powerful but CSS is widely implemented.

✔ Listing 1.11 is an example of an XSL style sheet to render an XML article. Style sheets

will be covered in more detail in Chapter 5, “XSL Transformation,” page 125 and

Chapter 6, “XSL Formatting Objects and Cascading Style Sheet,” page 161.

Listing 1.11: A Simple XSL Style Sheet

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”

xmlns=”http://www.w3.org/TR/REC-html40”>

<xsl:output method=”html”/>

<xsl:template match=”/”>

<HTML>

<HEAD>

<TITLE>Pineapplesoft Link</TITLE>

</HEAD>

<BODY>

<xsl:apply-templates/>

</BODY>

</HTML>

</xsl:template>

<xsl:template match=”section/title”>

<P><I><xsl:apply-templates/></I></P>

</xsl:template>

<xsl:template match=”article/title”>

<P><xsl:apply-templates/></P>

</xsl:template>

<xsl:template match=”url”>

<xsl:attribute name=”href”>

<xsl:apply-templates/>

</xsl:attribute>

34 Chapter 1: The XML Galaxy

E X A M P L E

03 2429 CH01 2.29.2000 2:18 PM Page 34

<xsl:apply-templates/>

</xsl:template>

<xsl:template match=”url[@protocol=’mailto’]”>

<A>

<xsl:attribute name=”href”>mailto:<xsl:apply-templates/>

</xsl:attribute>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match=”p”>

<P><xsl:apply-templates/></P>

</xsl:template>

<xsl:template match=”abstract | date | keywords | copyright”/>

</xsl:stylesheet>

DOM and SAX
DOM (Document Object Model) and SAX (Simple API for XML) are APIs to
access XML documents. They allow applications to read XML documents
without having to worry about the syntax (not unlike translators). They are
complementary: DOM is best suited for forms and editors, SAX is best with
application-to-application exchange.

✔ DOM and SAX are covered in Chapter 7, “The Parser and DOM,” page 191 and Chapter 8,

“Alternative API: SAX,” page 231. Chapter 9, “Writing XML,” page 269 discusses how to

create XML documents.

XLink and XPointer
XLink and XPointer are two parts of one standard currently under develop-
ment to provide a mechanism to establish relationships between docu-
ments.

Listing 1.12 demonstrates how a set of links can be maintained in XML.
Listing 1.12: A Set of Links in XML

<?xml version=”1.0” standalone=”no”?>

<references xmlns:xlink=”http://www.w3.org/XML/XLink/0.9”>

<link xlink:href=”http://www.mcp.com”>

35Companion Standards

E X A M P L E

continues

03 2429 CH01 2.29.2000 2:18 PM Page 35

Listing 1.12: continued

Macmillan

</link>

<link xlink:href=”http://www.pineapplesoft.com/newsletter”>

Pineapplesoft Link

</link>

<link xlink:href=”http://www.xml.com”>

XML.com

</link>

<link xlink:href=”http://www.comics.com”>

Comics.com

</link>

<link xlink:href=”http://www.fatbrain.com”>

Fatbrain.com

</link>

<link xlink:href=”http://www.abcnews.com”>

ABC News

</link>

</references>

✔ XLink is discussed in Chapter 10, “Modeling for Flexibility,” page 307.

XML Software
As explained in the previous section, XML popularity means that many
vendors are supporting it. This, in turn, means that many applications are
available to manipulate XML documents.

This section lists some of the most commonly used XML applications.
Again, this is not a complete list. We will discuss these products in more
detail in the following chapters.

XML Browser
An XML browser is the first application you would think of because it is so
close to the familiar HTML browser. An XML browser is used to view and
print XML documents. At the time of this writing, there are not many high-
quality XML browsers.

Microsoft Internet Explorer has supported XML since version 4.0. Internet
Explorer 5.0 has greatly enhanced the XML support. Unfortunately, the
support is based on early versions of the style sheet standards and is not
complete. Yet Internet Explorer 5.0 is the closest thing to a largely deployed
XML browser today.

36 Chapter 1: The XML Galaxy

03 2429 CH01 2.29.2000 2:18 PM Page 36

Netscape Communicator currently has no support for XML except for
Mozilla, the open-source version of Netscape Communicator. Mozilla has
strong support for XML. However, because Mozilla is still a work-in-
progress, it is not yet stable enough for practical usage.

Several other vendors have produced XML browsers. These browsers are at
various stages of development. One of the most interesting is InDelv XML
Browser, which has the most complete implementation of XSL at the time
of writing.

✔ Browsers are discussed in Chapter 5, “XSL Transformation,” and Chapter 6, “XSL

Formatting Objects and Cascading Style Sheet.”

XML Editors
To view documents, somebody must have written them. There is a surpris-
ingly large range of XML editors available. Some of these editors, however,
are scaled-down versions of SGML editors (such as Adobe Framemaker);
others are entirely new products (such as XML Pro).

A new range of editors is appearing on the market, led by products such as
XMetaL from SoftQuad. These editors offer the power of SGML editors but
with the ease of use you would expect from an XML product.

✔ Editors are discussed in Chapter 6, “XSL Formatting Objects and Cascading Style Sheet.”

XML Parsers
If you are writing your own XML applications, you probably don’t want to
fool around with the XML syntax. Parsers shield programmers from the
XML syntax.

There are many XML parsers available on the Internet, such as IBM’s XML
for Java. Also an increasing number of applications include an XML parser,
such as Oracle 8i.

✔ Parsers are discussed in Chapter 7, “The Parser and DOM,” and Chapter 8, “Alternative

API: SAX.”

XSL Processor
In many cases, you want to use XML “behind the scene.” You want to take
advantage of XML internally but you don’t want to force your users to
upgrade to an XML-compliant browser.

In all these cases, you will use XSL. XSL enables you to produce classic
HTML that works with current-generation browsers (and older, too) while
enabling you to retain the advantages of XML internally.

37XML Software

03 2429 CH01 2.29.2000 2:18 PM Page 37

To apply the magic of XSL, you will use an XSL processor. There also are
many XSL processors available, such as LotusXSL.

✔ XSL processors are discussed in Chapter 5, “XSL Transformation.”

What’s Next
The book is organized as follows:

• Chapters 2 through 4 will teach you the XML syntax, including the
syntax for DTDs and namespaces.

• Chapters 5 and 6 will teach you how to use style sheets to publish
documents.

• Chapters 7, 8, and 9 will teach you how to manipulate XML docu-
ments from JavaScript applications.

• Chapter 10 will discuss the topic of modeling. You have seen in this
introduction how structure is important for XML. Modeling is the
process of creating the structure.

• Chapter 11, “N-Tiered Architecture and XML,” and Chapter 12,
“Putting It All Together: An e-Commerce Example,” will wrap it up
with a realistic electronic commerce application. This application exer-
cises most if not all the techniques introduced in the previous chap-
ters.

• Appendix A will teach you just enough Java to be able to follow the
examples in Chapters 8 and 12. It also discusses when you should use
JavaScript and when you should use Java.

38 Chapter 1: The XML Galaxy

03 2429 CH01 2.29.2000 2:18 PM Page 38

03 2429 CH01 2.29.2000 2:18 PM Page 39

04 2429 CH02 11/12/99 1:00 PM Page 40

2

The XML Syntax
In this chapter, you will learn the syntax used for XML documents. More
specifically, you will learn

• how to write and read XML documents

• how XML structures documents

• how and where XML can be used

If you are curious, the latest version of the official recommendation is
always available from www.w3.org/TR/REC-xml. XML version 1.0 (the version
used in this book) is available from www.w3.org/TR/1998/REC-xml-19980210.

04 2429 CH02 11/12/99 1:00 PM Page 41

A First Look at the XML Syntax
If I had to summarize XML in one sentence, it would be something like “a
set of standards to exchange and publish information in a structured man-
ner.” The emphasis on structure cannot be underestimated.

XML is a language used to describe and manipulate structured documents.
XML documents are not limited to books and articles, or even Web sites,
and can include objects in a client/server application.

However, XML offers the same tree-like structure across all these applica-
tions. XML does not dictate or enforce the specifics of this structure—it
does not dictate how to populate the tree.

XML is a flexible mechanism that accommodates the structure of specific
applications. It provides a mechanism to encode both the information
manipulated by the application and its underlying structure.

XML also offers several mechanisms to manipulate the information—that
is, to view it, to access it from an application, and so on. Manipulating doc-
uments is done through the structure. So we are back where we started:
The structure is the key.

Getting Started with XML Markup
Listing 2.1 is a (small) address book in XML. It has only two entries: John
Doe and Jack Smith. Study it because we will use it throughout most of
this chapter and the next.
Listing 2.1: An Address Book in XML

<?xml version=”1.0”?>

<!-- loosely inspired by vCard 3.0 -->

<address-book>

<entry>

<name>John Doe</name>

<address>

<street>34 Fountain Square Plaza</street>

<region>OH</region>

<postal-code>45202</postal-code>

<locality>Cincinnati</locality>

<country>US</country>

</address>

<tel preferred=”true”>513-555-8889</tel>

<tel>513-555-7098</tel>

<email href=”mailto:jdoe@emailaholic.com”/>

42 Chapter 2: The XML Syntax

E X A M P L E

04 2429 CH02 11/12/99 1:00 PM Page 42

</entry>

<entry>

<name><fname>Jack</fname><lname>Smith</lname></name>

<tel>513-555-3465</tel>

<email href=”mailto:jsmith@emailaholic.com”/>

</entry>

</address-book>

As you can see, an XML document is textual in nature. XML-wise, the doc-
ument consists of character data and markup. Both are represented by text.

Ultimately, it’s the character data we are interested in because that’s the
information. However, the markup is important because it records the
structure of the document.

There are a variery of markup constructs in XML but it is easy to recognize
the markup because it is always enclosed in angle brackets.

N OT E
vCard is a standard for electronic business cards. In the next chapter, you will learn
where I used the vCard standard in preparing this example.

Obviously, it’s the markup that differentiates the XML document from plain
text. Listing 2.2 is the same address in plain text, with no markup and only
character data.
Listing 2.2: The Address Book in Plain Text

John Doe

34 Fountain Square Plaza

Cincinnati, OH 45202

US

513-555-8889 (preferred)

513-555-7098

jdoe@emailaholic.com

Jack Smith

513-555-3465

jsmith@emailaholic.com

Listing 2.2 helps illustrate the benefits of a markup language. Listing 2.1
and 2.2 carry exactly the same information. Because Listing 2.2 has no
markup, it does not record its own structure.

In both cases, it is easy to recognize the names, the phone numbers, the
email addresses, and so on. If anything, Listing 2.2 is probably more read-
able.

43A First Look at the XML Syntax

E X A M P L E

04 2429 CH02 11/12/99 1:00 PM Page 43

For software, however, it’s exactly the opposite. Software needs to be told
which is what. It needs to be told what the name is, what the address is,
and so on. That’s what the markup is all about; it breaks the text into its
constituents so software can process it.

Software does have one major advantage—speed. While it would take you a
long time to sort through a long list of a thousand addresses, software will
plunge through the same list in less than a minute.

However, before it can start, it needs to have the information in a predi-
gested format. This chapter and the following two chapters will concentrate
on XML as a predigested format.

The reward comes in Chapter 5, “XSL Transformation,” and subsequent
chapters where we will see how to tell the computer to do something useful
with these documents.

Element’s Start and End Tags
The building block of XML is the element, as that’s what comprises XML
documents. Each element has a name and a content.
<tel>513-555-7098</tel>

The content of an element is delimited by special markups known as start
tag and end tag. The tagging mechanism is similar to HTML, which is logi-
cal because both HTML and XML inherited their tagging from SGML.

The start tag is the name of the element (tel in the example) in angle
brackets; the end tag adds an extra slash character before the name.

Unlike HTML, both start and end tags are required. The following is not
correct in XML:
<tel>513-555-7098

It can’t be stressed enough that XML does not define elements. Nowhere in
the XML recommendation will you find the address book of Listing 2.1 or
the tel element. XML is an enabling standard that provides a common syn-
tax to store information according to a structure.

In this respect, I liken XML to SQL. SQL is the language you use to pro-
gram relational databases such as Oracle, SQL Server, or DB2. SQL pro-
vides a common language to create and manage relational databases.
However, SQL does not specify what you should store in these database or
which tables you should use.

Still, the availability of a common language has led to the development of a
lively industry. SQL vendors provide databases, modeling and development
tools, magazines, seminars, conferences, training, books, and more.

44 Chapter 2: The XML Syntax

E X A M P L E

04 2429 CH02 11/12/99 1:00 PM Page 44

Admittedly, the XML industry is not as large as the SQL industry, but it’s
catching up fast. By moving your data to XML rather than an esoteric syn-
tax, you can tap the growing XML industry for support.

Names in XML
Element names must follow certain rules. As we will see, there are other
names in XML that follow the same rules.

Names in XML must start with either a letter or the underscore character
(“_”). The rest of the name consists of letters, digits, the underscore charac-
ter, the dot (“.”), or a hyphen (“-”). Spaces are not allowed in names.

Finally, names cannot start with the string “xml”, which is reserved for the
XML specification itself.

N O T E
There is one more character you can use in names—the colon (:). However, the colon is
reserved for namespaces; therefore, it will be introduced in Chapter 4, “Namespaces.”

The following are examples of valid element names in XML:
<copyright-information>

<p>

<base64>

<décompte.client>

<firstname>

The following are examples of invalid element names. You could not use
these names in XML:
<123>

<first name>

<tom&jerry>

Unlike HTML, names are case sensitive in XML. So, the following names
are all different:
<address>

<ADDRESS>

<Address>

By convention, HTML elements in XML are always in uppercase. (And, yes,
it is possible to include HTML elements in XML documents. In Chapter 5,
you will see when it is useful.)

By convention, XML elements are frequently written in lowercase. When a
name consists of several words, the words are usually separated by a
hyphen, as in address-book.

45A First Look at the XML Syntax

E X A M P L E

04 2429 CH02 11/12/99 1:00 PM Page 45

Another popular convention is to capitalize the first letter of each word and
use no separation character as in AddressBook.

There are other conventions but these two are the most popular. Choose the
convention that works best for you but try to be consistent. It is difficult to
work with documents that mix conventions, as Listing 2.3 illustrates.
Listing 2.3: A Document with a Mix of Conventions

<?xml version=”1.0”?>

<address-book>

<ENTRY>

<name>John Doe</name>

<Address>

<street>34 Fountain Square Plaza</street>

<Region>OH</Region>

<PostalCode>45202</PostalCode>

<locality>Cincinnati</locality>

<country>US</country>

</Address>

<TEL PREFERRED=”true”>513-555-8889</TEL>

<TEL>513-555-7098</TEL>

<email href=”mailto:jdoe@emailaholic.com”/>

</ENTRY>

</address-book>

Although the document in Listing 2.3 is well-formed XML, it is difficult to
work with it because you never know how to write the next element. Is it
Address or address or ADDRESS? Mixing case is cumbersome and is consid-
ered a poor style.

N O T E
As we will see in the “Unicode” section, XML supports characters from most spoken
languages. You can use letters from any alphabet in names, including letters from the
Greek, Japanese, or Cyrillic alphabets.

Attributes
It is possible to attach additional information to elements in the form of
attributes. Attributes have a name and a value. The names follow the same
rules as element names.

Again, the syntax is similar to HTML. Elements can have one or more
attributes in the start tag, and the name is separated from the value by the
equal character. The value of the attribute is enclosed in double or single
quotation marks.

46 Chapter 2: The XML Syntax

E X A M P L E

04 2429 CH02 11/12/99 1:00 PM Page 46

For example, the tel element can have a preferred attribute:
<tel preferred=”true”>513-555-8889</tel>

Unlike HTML, XML insists on the quotation marks. The XML processor
would reject the following:
<tel preferred=true>513-555-8889</tel>

The quotation marks can be either single or double quotes. This is conve-
nient if you need to insert single or double quotation marks in an attribute
value.
<confidentiality level=”I don’t know”>

This document is not confidential.

</confidentiality>

or
<confidentiality level=’approved “for your eyes only”’>

This document is top-secret

</confidentiality>

Empty Element
Elements that have no content are known as empty elements. Usually, they
are enclosed in the document for the value of their attributes.

There is a shorthand notation for empty elements: The start and end tags
merge and the slash from the end tag is added at the end of the opening
tag.

For XML, the following two elements are identical:
<email href=”mailto:jdoe@emailaholic.com”/>

<email href=”mailto:jdoe@emailaholic.com”></email>

Nesting of Elements
As Listing 2.1 illustrates, element content is not limited to text; elements
can contain other elements that in turn can contain text or elements and
so on.

An XML document is a tree of elements. There is no limit to the depth of
the tree, and elements can repeat. As you see in Listing 2.1, there are two
entry elements in the address-book element. The entry for John Doe has
two tel elements. Figure 2.1 is the tree of Listing 2.1.

47A First Look at the XML Syntax

E X A M P L E

E X A M P L E

E X A M P L E

04 2429 CH02 11/12/99 1:00 PM Page 47

Figure 2.1: Tree of the address book

An element that is enclosed in another element is called a child. The ele-
ment it is enclosed into is its parent. In the following example, the name
element has two children: the fname and the lname elements. name is the
parent of both elements.
<name>

<fname>Jack</fname>

<lname>Smith</lname>

</name>

Start and end tags must always be balanced and children are always com-
pletely enclosed in their parents. In other words, it is not possible that the
end tag of a child appears after the end tag of its parent. So, the following
is illegal:
<name><fname>Jack</fname><lname>Smith</name></lname>

N O T E
It is not an accident if XML documents are trees. Trees are flexible, simple, and power-
ful. In particular, trees can be used to serialize any data structure.

XML is particularly well adapted to serialize objects from object-oriented languages
such as JavaScript, Java, or C++.

Root
At the root of the document there must be one and only one element. In
other words, all the elements in the document must be the children of a sin-
gle element. The following example is illegal because there are two entry
elements that are not enclosed in a top-level element:
<?xml version=”1.0”?>

<entry>

<name>John Doe</name>

48 Chapter 2: The XML Syntax

E X A M P L E

E X A M P L E

04 2429 CH02 11/12/99 1:00 PM Page 48

<email href=”mailto:jdoe@emailaholic.com”/>

</entry>

<entry>

<name>JackSmith</name>

<email href=”mailto:jsmith@emailaholic.com”/>

</entry>

It is easy to fix the previous example. It suffices to introduce a new root,
such as address-book.
<?xml version=”1.0”?>

<address-book>

<entry>

<name>John Doe</name>

<email href=”mailto:jdoe@emailaholic.com”/>

</entry>

<entry>

<name>JackSmith</name>

<email href=”mailto:jsmith@emailaholic.com”/>

</entry>

</address-book>

There is no rule that says the top-level element must be address-book.
If there is only one entry, then entry can act as the top-level element.
<?xml version=”1.0”?>

<entry>

<name>John Doe</name>

<email href=”mailto:jdoe@emailaholic.com”/>

</entry>

XML Declaration
The XML declaration is the first line of the document. The declaration iden-
tifies the document as an XML document. The declaration also lists the
version of XML used in the document. For the time being, it’s 1.0.
<?xml version=”1.0”?>

An XML processor can reject documents that have another version number.

The declaration can contain other attributes to support other features such
as character set encoding. The attributes are introduced with the feature
they support in this chapter and the next chapter.

49A First Look at the XML Syntax

E X A M P L E

E X A M P L E

E X A M P L E

04 2429 CH02 11/12/99 1:00 PM Page 49

The XML declaration is optional. The following document is valid even
though it doesn’t have a declaration:
<address-book>

<entry>

<name>John Doe</name>

<email href=”mailto:jdoe@emailaholic.com”/>

</entry>

<entry>

<name>JackSmith</name>

<email href=”mailto:jsmith@emailaholic.com”/>

</entry>

</address-book>

If the declaration is included however, it must start on the first character of
the first line of the document. The XML recommendation suggests you
include the declaration in every XML document.

Advanced Topics
As you can see, the core of the XML syntax is not difficult. Furthermore, if
you already know HTML, XML is familiar.

One of the design goals of XML was to develop a simple markup language
that would be easy to use and would remain human-readable. I think it
achieved that goal.

This section covers more advanced features of XML. You might not use
them in every document, but they are often useful.

Comments
To insert comments in a document, enclose them between “<!--” and “-->”.
Comments are used for notes, indication of ownership, and more. They are
intended for the human reader and they are ignored by the XML processor.
In the following example, a comment is made that the document was
inspired by vCard. The software does nothing with this comment but it
helps us next time we open this document.
<!-- loosely inspired by vCard 3.0 -->

Comments cannot be inserted in the markup. They must appear before or
after the markup.

Unicode
Characters in XML documents follow the Unicode standard. Unicode is a
major extension to the familiar ASCII character set. The Unicode

50 Chapter 2: The XML Syntax

E X A M P L E

E X A M P L E

04 2429 CH02 11/12/99 1:00 PM Page 50

Consortium (www.unicode.org) is responsible for publishing and maintain-
ing the Unicode standard. The same standard is published by ISO as
ISO/IEC 10646.

Unicode supports all spoken languages (on Earth) as well as mathematical
and other symbols. It supports English, Western European languages,
Cyrillic, Japanese, Chinese, and so on.

Support for Unicode is a major step forward in the internationalization of
the Web. Unicode also is supported in Windows NT.

However, to accommodate all those characters, Unicode needs 16 bits per
character. We are used to character sets, such as Latin-1 (Windows default
character set), that use only 8 bits per character. However, 8 bits supports
only 256 choices—not enough for Japanese, not to mention Japanese and
Chinese and English and Greek and Norwegian and more.

Unicode characters are twice as large as their Latin-1 equivalent; logically,
XML documents should be twice as large as normal text files. Fortunately,
there is a workaround. In most cases, we don’t need 16 bits and we can
encode XML documents with an 8-bit character set.

XML processor must recognize the UTF-8 and UTF-16 encodings. As the
name implies, UTF-8 uses 8 bits for English characters. Most processors
support other encodings. In particular, for Western European languages,
they support ISO 8859-1 (the official name for Latin-1).

Documents that use encoding other than UTF-8 or UTF-16 must start with
an XML declaration. The declaration must have an attribute encoding to
announce the encoding used.

For example, a document written in Latin-1 (such as with Windows
Notepad) could use the following declaration:
<?xml version=”1.0” encoding=”ISO-8859-1”?>

<entrée>

<nom>José Dupont<nom/>

<email href=”mailto:jdupont@emailaholic.com”/>

</entrée>

N O T E
You might wonder how the XML processor can read the encoding parameter. Indeed, to
reach the encoding parameter, the processor must read the declaration. However, to
read the declaration, the processor needs to know which encoding is being used.

This looks like a dog running after his tail until you realize that the first characters of
an XML document always are <?xml. The XML processor can match these four charac-
ters against the encoding it supports and guess enough of the encoding (is it 8 or 16
bits?) to read the declaration.

51Advanced Topics

E X A M P L E

continues

04 2429 CH02 11/12/99 1:00 PM Page 51

What about those documents that have no declaration (since the declaration is
optional)? These documents must use one of the default encoding parameters (UTF-8
or UTF-16). Again, the XML processor can match the first character (which must be a <)
against its encoding in UTF-8 or UTF-16.

Entities
The document in Listing 2.1 (page 42) is self-contained: The document is
complete and it can be stored in just one file. Complex documents are often
split over several files: the text, the accompanying graphics, and so on.

XML, however, does not reason in terms of files. Instead it organizes docu-
ments physically in entities. In some cases, entities are equivalent to files;
in others, they are not.

XML entities is a complex topic that we will revisit in the next chapter,
when we will see how to declare entities in the DTD. In this chapter, we
will see how to use entities.

Entities are inserted in the document through entity references (the name of
the entity between an ampersand character and a semicolon). For the appli-
cation, the entity reference is replaced by the content of the entity. If we
assume we have defined an entity “us,” which has the value “United
States,” the following two lines are equivalent:
<country>&us;</country>

<country>United States</country>

XML predefines entities for the characters used in markup (angle brackets,
quotes, and so on). The entities are used to escape the characters from ele-
ment or attribute content. The entities are

• < left angle bracket “<” must be escaped with <

• & ampersand “&” must be escaped with &

• > right angle bracket “>” must be escaped with > in the combi-
nation]]> in CDATA sections (see the following)

• ' single quote “‘” can be escaped with ' essentially in para-
meter value

• " double quote “”” can be escaped with " essentially in
parameter value

The following is not valid because the ampersand would confuse the XML
processor:
<company>Mark & Spencer</company>

Instead, it must be rewritten to escape the ampersand bracket with an
& entity:

52 Chapter 2: The XML Syntax

E X A M P L E

E X A M P L E

04 2429 CH02 11/12/99 1:00 PM Page 52

<company>Mark & Spencer</company>

XML also supports character references where a letter is replaced by its
Unicode character code. For example, if your keyboard does not support
accentuated letters, you can still write my name in XML as:
<name>Benoît Marchal</name>

Character references that start with &#x provides a hexadecimal represen-
tation of the character code. Character references that start with &#
provide a decimal representation of the character code.

T I P
Under Windows, to find the character code of most characters, you can use the
Character Map. The character code appears in the status bar (see Figure 2.2).

53Advanced Topics

Figure 2.2: The character code in Character Map

Special Attributes
XML defines two attributes:

• xml:space for those applications that discard duplicate spaces (similar
to Web browsers that discard unnecessary spaces in HTML). This
attribute controls whether the application can discard spaces. If set to
preserve, the application should preserve all spaces in this element
and its children. If set to default, the application can use its default
space handling.

• xml:lang in publishing, it is often desirable to know in which language
the content is written. This attribute can be used to indicate the lan-
guage of the element’s content. For example:

<p xml:lang=”en-GB”>What colour is it?</p>
<p xml:lang=”en-US”>What color is it?</p>

Processing Instructions
Processing instructions (abbreviated PI) is a mechanism to insert non-XML
statements, such as scripts, in the document.

E X A M P L E

Character code

04 2429 CH02 11/12/99 1:00 PM Page 53

At first sight, processing instruction is at odds with the XML concept that
processing is always derived from the structure. As we saw in the first
chapter, with SGML and XML, processing is derived from the structure of
the document. There should be no need to insert specific instructions in a
document. This is one of the major improvements of SGML when compared
to earlier markup languages.

That’s the theory. In practice, there are cases where it is easier to insert
processing instructions rather than define complex structure. Processing
instructions are a concession to reality from the XML standard developers.

You already are familiar with processing instructions because the XML dec-
laration is a processing instruction:
<?xml version=”1.0” encoding=”ISO-8859-1”?>

✔ In Chapter 5, “XSL Transformation,” you will see how to use processing instructions to

attach style sheets to documents (page 125).

<?xml-stylesheet href=”simple-ie5.xsl” type=”text/xsl”?>

Finally, processing instructions are used by specific applications. For exam-
ple, XMetaL (an XML editor) uses them to create templates. This process-
ing instruction is specific to XMetaL:
<?xm-replace_text {Click here to type the name}?>

The processing instruction is enclosed in <? and ?>. The first name is the
target. It identifies the application or the device to which the instructions
are directed. The rest of the processing instructions are in a format specific
to the target. It does not have to be XML.

CDATA Sections
As you have seen, markup characters (left angle bracket and ampersand)
that appear in the content of an element must be escaped with an entity.

For some applications, it is difficult to escape markup characters, if only
because there are too many of them. Mathematical equations can use many
left angle brackets. It is difficult to include a scripting language in a docu-
ment and to escape the angle brackets and ampersands. Also, it is difficult
to include an XML document in an XML document.

CDATA sections are intended for these cases. CDATA sections are delimited
by “<[CDATA[” and “]]>”. The XML processor ignores all markup except for
]]> (which means it is not possible to include a CDATA section in another
CDATA section).

54 Chapter 2: The XML Syntax

E X A M P L E

04 2429 CH02 11/12/99 1:00 PM Page 54

The following example uses a CDATA section to insert an XML example
into an XML document:
<?xml version=”1.0”?>

<example>

<[CDATA[

<?xml version=”1.0”?>

<entry>

<name>John Doe</name>

<email href=”mailto:jdoe@emailaholic.com”/>

</entry>]]>

</example>

N O T E
CDATA stands for character data. In the next chapters you will see that text in an ele-
ment is called PCDATA, parsed character data.

The difference between CDATA and PCDATA is that PCDATA cannot contain markup char-
acters.

Frequently Asked Questions on XML
This completes our study of the XML syntax. The only aspect of the XML
recommendation we haven’t studied yet is the DTD. The DTD is discussed
in Chapter 3, “XML Schemas.”

Before moving to the DTD, however, I’d like to answer three common ques-
tions on XML documents.

Code Indenting
Listing 2.1 is indented to make the tree more apparent. Although it is not
required for the XML processor, it makes the code more readable as we can
see immediately where an element starts and ends.

This raises the question of what the processor does with the whitespaces
used for indenting. Does it ignore it? The answer is a qualified yes.

Strictly speaking, the XML processor does not ignore whitespaces. In the
following example, it sees the content of name as a line break, three spaces,
fname, another line break, three spaces, lname, and a line break.
<name>

<fname>Jack</fname>

<lname>Smith</lname>

</name>

55Frequently Asked Questions on XML

E X A M P L E

E X A M P L E

04 2429 CH02 11/12/99 1:00 PM Page 55

But in the following case, it sees the content of name as just fname and
lname. No indenting.
<name><fname>Jack</fname><lname>Smith</lname></name>

It is easy to filter unwanted whitespaces and most applications do it. For
example, XSL (XML Style Sheet Language) ignores what it recognizes as
indenting.

Likewise, some XML editors give you the option of indenting source code
automatically. If they indent the code, they will ignore indenting in the doc-
ument.

If whitespaces are important for your document, then you should use the
xml:space attribute that was introduced earlier.

Why the End Tag?
At first, the need to terminate each element with an end tag is annoying.
It is required because XML does not have predefined elements.

An HTML browser can work out when an element has no closing tags
because it knows the structure of the document, it knows which elements
are allowed where, and it can deduce where each element should end.

Indeed, if the following is an HTML fragment, a browser does not need end
tags for paragraphs, nor does it need an empty tag for the break (see
Listing 2.4):
Listing 2.4: An HTML Document Needs No End Tags

<P>John Doe

<P>34 Fountain Square Plaza

Cincinnati, OH 45202

US

<P>Tel: 513-555-8889

<P>Tel: 513-555-7098

<P>Email: jdoe@emailaholic.com

The browser can deduce where the paragraphs end because it knows that
paragraphs cannot nest. Therefore, the beginning of a new paragraph must
coincide with the end of the previous one. Likewise, the browser knows
that the break is an empty element. Because of all this a priori knowledge,
the browser can “fill in the blank” and know the document must be inter-
preted as
<P>John Doe</P>

<P>34 Fountain Square Plaza
</BR>

Cincinnati, OH 45202
</BR>

56 Chapter 2: The XML Syntax

E X A M P L E

E X A M P L E

04 2429 CH02 11/12/99 1:00 PM Page 56

US</P>

<P>Tel: 513-555-8889</P>

<P>Tel: 513-555-7098</P>

<P>Email: jdoe@emailaholic.com</P>

However, an XML processor does not know the structure of the document
because you define your own tags. So, an XML processor does not know
that p elements (it does not know they are paragraphs, either) cannot nest.
If Listing 2.4 was XML, the processor could interpret it as
<P>John Doe

<P>34 Fountain Square Plaza

Cincinnati, OH 45202</BR>

US</BR>

<P>Tel: 513-555-8889

<P>Tel: 513-555-7098

<P>Email: jdoe@emailaholic.com</P>

</P>

</P>

</P>

</P>

or as:
<P>John Doe</P>

<P>34 Fountain Square Plaza

Cincinnati, OH 45202</BR>

US

<P>Tel: 513-555-8889</P>

<P>Tel: 513-555-7098</P>

</P>

<P>Email: jdoe@emailaholic.com</P>

There are many other possibilities and that’s precisely the problem.
The processor wouldn’t know which one to pick so the markup has to be
unambiguous.

T I P
In the next chapter, you will see how to declare the structure of documents with DTDs.
Theoretically, the XML processor could use the DTD to resolve ambiguities in the
markup. Indeed, that’s how SGML processors work. However, you also will learn that
a category of XML processors ignores DTDs.

57Frequently Asked Question on XML

04 2429 CH02 11/12/99 1:00 PM Page 57

XML and Semantic
It is important to realize that XML alone does not define the semantic (the
meaning) of the document. The element names are meaningful only to
humans. They are meaningless to the XML processor.

The processor does not know what a name is. And it does not know the dif-
ference between a name and an address, apart from the fact that an address
has more children than a name. For the XML processor, Listing 2.5, where
the element names are totally mixed up, is as good as Listing 2.1.
Listing 2.5: Meaningless Names

<?xml version=”1.0”?>

<name>

<tel>

<street>John Doe</street>

<country>

<email>34 Fountain Square Plaza</email>

<locality>OH</locality>

<region>45202</region>

<postal-code>Cincinnati</postal-code>

<address>US</address>

</country>

<tel preferred=”true”>513-555-8889</tel>

<tel>513-555-7098</tel>

<address-book href=”mailto:jdoe@emailaholic.com”/>

</tel>

<tel>

<street>Jack Smith</street>

<tel>513-555-3465</tel>

<address-book href=”mailto:jsmith@emailaholic.com”/>

</tel>

</name>

The semantic of an XML document is provided by the application. As we
will see in Chapter 5 and later, some XML companion standards deal with
some aspects of semantic.

For example, XSL describes how to present information. It provides format-
ting semantic for a document. XLink and RDF (Resource Definition
Framework) can be used to describe the relationships between documents.

58 Chapter 2: The XML Syntax

E X A M P L E

04 2429 CH02 11/12/99 1:00 PM Page 58

Four Common Errors
As you have seen, the XML syntax is very strict: Elements must have both
a start and end tag, or they must use the special empty element tag;
attribute values must be fully quoted; there can be only one top-level ele-
ment; and so on.

A strict syntax was a design goal for XML. The browser vendors asked for
it. HTML is very lenient, and HTML browsers accept anything that looks
vaguely like HTML. It might have helped with the early adoption of HTML
but now it is a problem.

Studies estimate that more than 50% of the code in a browser deals with
errors or the sloppiness of HTML authors. Consequently, an HTML browser
is difficult to write, it has slowed competition, and it makes for mega-
downloads.

It is expected that in the future, people will increasingly rely on PDAs
(Personal Digital Assistants like the PalmPilot) or portable phones to access
the Web. These devices don’t have the resources to accommodate a complex
syntax or megabyte browsers.

In short, making XML stricter meant simplifying the work of the program-
mers and that translates into more competition, more XML tools, smaller
tools that fit in smaller devices, and, hopefully, faster tools.

Yet, it means that you have to be very careful about what you write. This is
particularly true if you are used to writing HTML documents. In this sec-
tion, I review the four most common errors in writing XML code.

Forget End Tags
For reasons explained previously, end tags are mandatory (except for empty
elements). The XML processor would reject the following because street and
country have no end tags:
<address>

<street>34 Fountain Square Plaza

<region>OH</region>

<postal-code>45202</postal-code>

<locality>Cincinnati</locality>

<country>US

</address>

59Four Common Errors

E X A M P L E

04 2429 CH02 11/12/99 1:00 PM Page 59

Forget That XML Is Case Sensitive
XML names are case sensitive. The following two elements are different
for XML. The first one is a “tel” element whereas the second one is a “TEL”
element:
<tel>513-555-7098</tel>

<TEL>513-555-7098</TEL>

A popular variation on this error is to use a different case in the opening
and closing tag of an element:
<tel>513-555-7098</TEL>

Introduce Spaces in the Name of Element
It is illegal to introduce spaces in the name of elements. The XML processor
interprets spaces as the beginning of an attribute. The following example is
not valid because address book has a space in it:
<address book>

<entry>

<name>John Doe</name>

<email href=”mailto:jdoe@emailaholic.com”/>

</entry>

</address book>

Forget the Quotes for Attribute Value
Unlike HTML, XML forces you to quote attribute values. The following is
not acceptable:
<tel preferred=true>513-555-8889</tel>

A popular variation on this error is to forget the closing quote. The XML
processor assumes that the content of the element is part of the attribute,
which is guaranteed to produce funny results! The following is incorrect
because the attribute has no closing quote:
<tel preferred=”true>513-555-8889</tel>

XML Editors
If you are like me, you will soon hate writing XML by hand. It’s not that
the syntax is difficult, but it is annoying to remember to close every ele-
ment and to escape left angle brackets.

Fortunately, there are several XML editors on the market that can help you
with writing XML code. XML Notepad from Microsoft is a simple but effec-
tive editor. Notepad divides the screen into two panes. In the left pane, it

60 Chapter 2: The XML Syntax

E X A M P L E

E X A M P L E

E X A M P L E

E X A M P L E

04 2429 CH02 11/12/99 1:00 PM Page 60

shows the document tree (Structure); in the right pane, the content
(Values). Figure 2.3 shows XML Notepad.

61Three Applications of XML

Figure 2.3: XML Notepad

Best of all, XML Notepad is free. You can download it from
www.microsoft.com. Search for “XML Notepad.” At the time of this writing,
XML Notepad was still in beta. Take a moment to review the release notes
to see how final the version you download is. Note XML Notepad works bet-
ter if Internet Explorer 5.0 is installed. More specifically, if you are using
Internet Explorer 4.0, all names are converted to uppercase! IBM also has
useful tools at www.alphaworks.ibm.com.

If you are serious about XML editing, you will want to adopt a more power-
ful editor. Good editors use style sheets to present the information and they
might hide the markup completely. It frees you to concentrate on what
really matters—the text.

✔ For a more comprehensive discussion of what you should look for when shopping for an

XML editor, turn to the section “CSS and XML Editors” in Chapter 6 (page 182).

Three Applications of XML
Another design goal for XML was to develop a language that could suit a
wide variety of applications. In this respect, XML has probably exceeded its
creators’ wildest dreams.

04 2429 CH02 11/12/99 1:00 PM Page 61

In this section, I introduce you to some applications of XML. As you will see
throughout this book, many applications can benefit from XML. This sec-
tion gives you an introduction of what XML has been used for.

Publishing
Because XML roots are in publishing, it’s no wonder the standard is well
adapted to publishing. XML is being used by an increasing number of pub-
lishers as the format for documents. The XML standard itself was pub-
lished with XML.

Listing 2.6 is an XML document for a monthly newsletter. As you can see, it
uses elements for the title, abstract, paragraphs, and other concepts com-
mon in publishing.
Listing 2.6: A Newsletter in XML

<?xml version=”1.0”?>

<article fname=”19990101_xsl”>

<title>XML Style Sheets</title>

<date>January 1999</date>

<copyright>1999, Benoit Marchal</copyright>

<abstract>Style sheets add flexibility to document viewing.</abstract>

<keywords>XML, XSL, style sheet, publishing, web</keywords>

<section>

<p>Send comments and suggestions to <url protocol=”mailto”>bmarchal
➥@pineapplesoft.com</url>.</p>

</section>

<section>

<title>Styling</title>

<p>Style sheets are inherited from SGML, an XML ancestor. Style sheets
➥originated in publishing and document management applications. XSL is XML’s
➥ standard style sheet, see <url>http://www.w3.org/Style</url>.</p>

</section>

<section>

<title>How XSL Works</title>

<p>An XSL style sheet is a set of rules where each rule specifies how to format
➥certain elements in the document. To continue the example from the previous
➥section, the style sheets have rules for title, paragraphs, and keywords.</p>

<p>With XSL, these rules are powerful enough not only to format the document but
➥also to reorganize it, e.g., by moving the title to the front page or
➥extracting the list of keywords. This can lead to exciting applications of XSL
➥outside the realm of traditional publishing. For example, XSL can be used to
➥convert documents between the company-specific markup and a standard one.</p>

</section>

<section>

<title>The Added Flexibility of Style Sheets</title>

62 Chapter 2: The XML Syntax

E X A M P L E

04 2429 CH02 11/12/99 1:00 PM Page 62

<p>Style sheets are separated from documents. Therefore, one document can have
➥more than one style sheet and, conversely, one style sheet can be shared
➥amongst several documents.</p>

<p>This means that a document can be rendered differently depending on the media
➥or the audience. For example, a “managerial” style sheet may present a summary
➥view of a document that highlights key elements but a “clerical” style sheet
➥may display more detailed information.</p>

</section>

</article>

The main advantages of using XML for publishing are

• the capability to convert XML documents to different media: the Web,
print, and more

• for large document sets, the capability to enforce a common structure
that simplifies editing

• the emphasis on structure means that XML documents are better
equipped to withstand the test of time, because structure is more sta-
ble than formatting

✔ Turn to Chapter 5, “XSL Transformation,” page 125 and Chapter 6, “XSL Formatting Objects

and Cascading Style Sheet,” page 161 for a more complete discussion of how to use XML for

publishing.

Business Document Exchange
XML is not limited to publishing. It has been used successfully with busi-
ness and commercial documents. In this case, the elements would be price,
product names, and so on. Listing 2.7 is a book order in XML.
Listing 2.7: An Order in XML

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<order>

<date>19990727</date>

<sender>

<name>Playfield Software</name>

<address>

<street>38 Fountain Square Plaza</street>

<region>OH</region>

<postal-code>45263</postal-code>

<locality>Cincinnati</locality>

<country>US</country>

</address>

</sender>

63Three Applications of XML

E X A M P L E

04 2429 CH02 11/12/99 1:00 PM Page 63

<receiver>

<name>Macmillan Publishing</name>

<address>

<street>201 West 103rd Street</street>

<region>IN</region>

<postal-code>46290</postal-code>

<locality>Indianapolis</locality>

<country>US</country>

</address>

</receiver>

<lines>

<reference href=”urn:isbn:0-7897-2242-9”/>

<description>XML By Example</description>

<quantity>10</quantity>

<price currency=”usd”>19.99</price>

</lines>

</order>

The main advantage of placing the order in XML rather than on paper is
that software can process it. An application could read this order and auto-
matically fulfill it.

For years, this was the realm of EDI technologies (EDI stands for
Electronic Data Interchange). At the heart of EDI is a major effort to stan-
dardize the semantic of every commercial and administrative document
(order, invoice, tax declaration, payment, catalog, and more).

There are many advantages to building a common semantic on a worldwide
scale. In particular, it is possible to completely automate the flow of infor-
mation between companies. However, one major inconvenience is the need
to reach a consensus.

In practice, it is easy to agree on a few core elements, such as the quantity,
the name, the address, and it is very easy to disagree on anything else.
Imagine how complex an order can be when it must accommodate the regu-
lations and business practice of every country.

In practice, organizations that use EDI have to simplify the standard.
Unfortunately, they also might have to add specific applications that are
not provided for in the standard.

In doing so, they often deviate from the standard. Unfortunately, nothing in
the existing EDI standard supports that departure from the standard.

64 Chapter 2: The XML Syntax

04 2429 CH02 11/12/99 1:00 PM Page 64

It is expected that XML will greatly simplify EDI because XML is a com-
plete architecture for information exchange. It supports the common
semantic where it makes sense, but it also supports extending and chang-
ing the documents where it makes sense.

Channel
Internet Explorer 4.0 introduced the concept of channels. Channels are Web
sites to which you can subscribe. Figure 2.4 is the channel bar of Internet
Explorer (if you are curious, the channels are the default channels for
Belgium).

65Three Applications of XML

Figure 2.4: Channel bar in Internet Explorer 4.0

Behind each icon is an XML document. Indeed, the channels are described
by using CDF, the Channel Definition Format. CDF is an application of
XML.

Listing 2.8 is a CDF file for a channel. Again, the elements are specific to
the application; in this case, they describe the channel, how often it must
be updated, and which icon to use. However, the syntax is the familiar XML
syntax.
Listing 2.8: A Channel Definition in XML

<?xml version=”1.0”?>

<CHANNEL BASE=”http://www.pineapplesoft.com/newsletter/” HREF=”index.html”
➥PRECACHE=”YES” LEVEL=”0”>

<TITLE>Pineapplesoft Link</TITLE>

<ABSTRACT>Free monthly newsletter</ABSTRACT>

<LOGO HREF=”pslnk.gif” STYLE=”IMAGE”/>

<SCHEDULE STARTDATE=”1998-01-01”>

E X A M P L E

continues

04 2429 CH02 11/12/99 1:00 PM Page 65

Listing 2.8: continued

<INTERVALTIME DAY=”14”/>

</SCHEDULE>

</CHANNEL>

What’s Next
In this chapter, you learned enough XML syntax to be able to read or write
XML documents. You also learned that XML does not predefine elements,
that it is up to the application to define elements that make sense.

In the next chapter, you will learn how to describe XML documents with a
DTD. The DTD is an important modeling tool for XML developers, and it is
used to better serve XML authors.

66 Chapter 2: The XML Syntax

04 2429 CH02 11/12/99 1:00 PM Page 66

04 2429 CH02 11/12/99 1:00 PM Page 67

05 2429 CH03 2.29.2000 2:19 PM Page 68

3

XML Schemas
In Chapter 2, “The XML Syntax,” you learned how to write and read XML
documents. More importantly, you learned that XML emphasizes the struc-
ture of documents.

This chapter further develops that theme by looking at the DTD, short for
Document Type Definition, a mechanism to describe the structure of docu-
ments. Specifically, you will learn how to

• model XML documents

• express the model in a DTD

• validate a document against its model

The DTD is the original modeling language or schema for XML. However,
for historical reasons, the DTD is somewhat limited and people are looking
for solutions to overcome these limitations. The W3C is working on an
alternative to DTD. We will review the current status of that effort.

This chapter is probably the most abstract chapter in this book. You might
want to temporarily skip the second half (starting from the section
“Entities and Notations”) and revisit it after you have read through the
book.

05 2429 CH03 2.29.2000 2:19 PM Page 69

The DTD Syntax
The syntax for DTDs is different from the syntax for XML documents.
Listing 3.1 is the address book introduced in Chapter 2 but with one differ-
ence: It has a new <!DOCTYPE> statement. The new statement is introduced
in the section “Document Type Declaration.” For now, it suffices to say that
it links the document file to the DTD file. Listing 3.2 is its DTD.
Listing 3.1: An Address Book in XML

<?xml version=”1.0”?>

<!DOCTYPE address-book SYSTEM “address-book.dtd”>

<!-- loosely inspired by vCard 3.0 -->

<address-book>

<entry>

<name>John Doe</name>

<address>

<street>34 Fountain Square Plaza</street>

<region>OH</region>

<postal-code>45202</postal-code>

<locality>Cincinnati</locality>

<country>US</country>

</address>

<tel preferred=”true”>513-555-8889</tel>

<tel>513-555-7098</tel>

<email href=”mailto:jdoe@emailaholic.com”/>

</entry>

<entry>

<name><fname>Jack</fname><lname>Smith</lname></name>

<tel>513-555-3465</tel>

<email href=”mailto:jsmith@emailaholic.com”/>

</entry>

</address-book>

Listing 3.2: The DTD for the Address Book

<!-- top-level element, the address book

is a list of entries -->

<!ELEMENT address-book (entry+)>

<!-- an entry is a name followed by

addresses, phone numbers, etc. -->

70 Chapter 3: XML Schemas

E X A M P L E

05 2429 CH03 2.29.2000 2:19 PM Page 70

<!ELEMENT entry (name,address*,tel*,fax*,email*)>

<!-- name is made of string, first name

and last name. This is a very flexible

model to accommodate exotic name -->

<!ELEMENT name (#PCDATA | fname | lname)*>

<!ELEMENT fname (#PCDATA)>

<!ELEMENT lname (#PCDATA)>

<!-- definition of the address structure

if several addresses, the preferred

attribute signals the “default” one -->

<!ELEMENT address (street,region?,postal-code,locality,country)>

<!ATTLIST address preferred (true | false) “false”>

<!ELEMENT street (#PCDATA)>

<!ELEMENT region (#PCDATA)>

<!ELEMENT postal-code (#PCDATA)>

<!ELEMENT locality (#PCDATA)>

<!ELEMENT country (#PCDATA)>

<!-- phone, fax and email, same preferred

attribute as address -->

<!ELEMENT tel (#PCDATA)>

<!ATTLIST tel preferred (true | false) “false”>

<!ELEMENT fax (#PCDATA)>

<!ATTLIST fax preferred (true | false) “false”>

<!ELEMENT email EMPTY>

<!ATTLIST email href CDATA #REQUIRED

preferred (true | false) “false”>

Element Declaration
1. DTD is a mechanism to describe every object (element, attribute, and

so on) that can appear in the document, starting with elements. The
following is an example of element declaration:

<!ELEMENT address-book (entry+)>

After the <!ELEMENT markup comes the element name followed by its
content model. The element declaration is terminated with a right angle
bracket.

71The DTD Syntax

E X A M P L E

05 2429 CH03 2.29.2000 2:19 PM Page 71

Element declarations are easy to read: The right side (the content model)
defines the left side (the element name). In other words, the content model
lists the children that are acceptable in the element.

The previous declaration means that an address-book element contains one
or more entry elements. address-book is on the left side, entry on the right.
The plus sign after entry means there can be more than one entry element.

2. Parentheses are used to group elements in the content model, as in
the following example:

<!ELEMENT name (lname, (fname | title))>

Element Name
As we saw in Chapter 2, XML names must follow certain rules. Specifically,
names must start with either a letter or a limited set of punctuation char-
acters (“_”,“:”). The rest of the name can consist of the same characters plus
letters, digits and new punctuation characters (“.”, “-”). Spaces are not
allowed in names.

Names cannot start with the string “xml,” and as we will see in Chapter 4,
“Namespaces,” the colon plays a special role so it is advised you don’t use it.

Special Keywords
For most elements, the content model is a list of elements. It also can be
one of the following keywords:

• #PCDATA stands for parsed character data and means the element can
contain text. #PCDATA is often (but not always) used for leaf elements.
Leaf elements are elements that have no child elements.

• EMPTY means the element is an empty element. EMPTY always indicates
a leaf element.

• ANY means the element can contain any other element declared in the
DTD. This is seldom used because it carries almost no structure infor-
mation. ANY is sometimes used during the development of a DTD,
before a precise rule has been written. Note that the elements must be
declared in the DTD.

Element contents that have #PCDATA are said to be mixed content. Element
contents that contain only elements are said to be element content. In
Listing 3.2, tel is a leaf element that contains only text while email is an
empty element:
<!ELEMENT tel (#PCDATA)>

<!ELEMENT email EMPTY>

Note that CDATA sections appear anywhere #PCDATA appears.

72 Chapter 3: XML Schemas

E X A M P L E

E X A M P L E

05 2429 CH03 2.29.2000 2:19 PM Page 72

The Secret of Plus, Star, and Question Mark
The plus (“+”), star (“*”), and question mark (“?”) characters in the element
content are occurrence indicators. They indicate whether and how elements
in the child list can repeat.

• An element followed by no occurrence indicator must appear once and
only once in the element being defined.

• An element followed by a “+” character must appear one or several
times in the element being defined. The element can repeat.

• An element followed by a “*” character can appear zero or more times
in the element being defined. The element is optional but, if it is
included, it can repeat indefinitely.

• An element followed by a “?” character can appear once or not at all in
the element being defined. It indicates the element is optional and, if
included, cannot repeat.

The entry and name elements have content model that uses an occurrence
indicator:
<!ELEMENT entry (name,address*,tel*,fax*,email*)>

<!ELEMENT address (street,region?,postal-code,locality,country)>

Acceptable children for the entry are name, address, tel, fax, and email.
Except for name, these children are optional and can repeat.

Acceptable children for address are street, region, postal-code, locality,
and country. None of the children can repeat but the region is optional.

The Secret of Comma and Vertical Bar
The comma (“,”) and vertical bar (“|”) characters are connectors.
Connectors separate the children in the content model, they indicate the
order in which the children can appear. The connectors are

• the “,” character, which means both elements on the right and the left
of the comma must appear in the same order in the document.

• the “|” character, which means that only one of the elements on the
left or the right of the vertical bar must appear in the document.

The name and address elements are good examples of connectors.
<!ELEMENT name (#PCDATA | fname | lname)*>

<!ELEMENT address (street,region?,postal-code,locality,country)>

73The DTD Syntax

E X A M P L E

E X A M P L E

05 2429 CH03 2.29.2000 2:19 PM Page 73

Acceptable children for name are #PCDATA or a fname element or a lname ele-
ment. Note that it is one or the other. However, the whole model can repeat
thanks to the “*” occurrence indicator.

Acceptable children for address are street, region, postal-code, locality,
and country, in exactly that order.

The various components of mixed content must always be separated by a
“|” and the model must repeat. The following definition is incorrect:
<!ELEMENT name (#PCDATA, fname, lname)>

It must be
<!ELEMENT name (#PCDATA | fname | lname)*>

Element Content and Indenting
In the previous chapter, you learned that the XML application ignores
indenting in most cases. Here again, a DTD can help.

If a DTD is associated with the document, then the XML processor knows
that spaces in an element that has element content must indent (because
the element has element content, it cannot contain any text). The XML
processor can label the spaces as ignorable whitespaces. This is a very
powerful hint to the application that the spaces are indenting.

Nonambiguous Model
The content model must be deterministic or unambiguous. In plain English,
it means that it is possible to decide which part of the model applies to the
current element by looking only at the current element.

For example, the following model is not acceptable:
<!ELEMENT cover ((title, author) | (title, subtitle))>

because when the XML processor is reading the element
<title>XML by Example</title>

in
<cover><title>XML by Example</title><author>Benoît Marchal</author></cover>

it cannot decide whether the title element is part of (title, author) or
of (title, subtitle) by looking at title only. To decide that title is part
of (title, author), it needs to look past title to the author element.

In most cases, however, it is possible to reorganize the document so that the
model becomes acceptable:
<!ELEMENT cover (title, (author | subtitle))>

Now when the processor sees title, it knows where it fits in the model.

74 Chapter 3: XML Schemas

E X A M P L E

05 2429 CH03 2.29.2000 2:19 PM Page 74

Attributes
Attributes also must be declared in the DTD. Element attributes are
declared with the ATTLIST declaration, for example:
<!ATTLIST tel preferred (true | false) “false”>

The various components in this declaration are the markup (<!ATTLIST), the
element name (tel), the attribute name (preferred), the attribute type
((true | false)), a default value (“false”), and the right angle bracket.

For elements that have more than one attribute, you can group the declara-
tions. For example, email has two attributes:
<!ATTLIST email href CDATA #REQUIRED

preferred (true | false) “false”>

Attribute declaration can appear anywhere in the DTD. For readability, it
is best to list attributes immediately after the element declaration.

C A U T I O N
If used in a valid document, the special attributes xml:space and xml:lang must be
declared as

xml:space (default|preserve) “preserve”

xml:lang NMTOKEN #IMPLIED

The DTD provides more control over the content of attributes than over the
content of elements. Attributes are broadly divided into three categories:

• string attributes contain text, for example:
<!ATTLIST email href CDATA #REQUIRED>

• tokenized attributes have constraints on the content of the attribute,
for example:
<!ATTLIST entry id ID #IMPLIED>

• enumerated-type attributes accept one value in a list, for example:

<!ATTLIST entry preferred (true | false) “false”>

Attribute types can take any of the following values:

• CDATA for string attributes.

• ID for identifier. An identifier is a name that is unique in the docu-
ment.

• IDREF must be the value of an ID used elsewhere in the same docu-
ment. IDREF is used to create links within a document.

• IDREFS is a list of IDREF separated by spaces.

75The DTD Syntax

E X A M P L E

E X A M P L E

E X A M P L E

05 2429 CH03 2.29.2000 2:19 PM Page 75

• ENTITY must be the name of an external entity; this is how you assign
an external entity to an attribute.

• ENTITIES is a list of ENTITY separated by spaces.

• NMTOKEN is essentially a word without spaces.

• NMTOKENS is a list of NMTOKEN separated by spaces.

• Enumerated-type list is a closed list of nmtokens separated by |, the
value has to be one of the nmtokens. The list of tokens can further be
limited to NOTATIONs (introduced in the section “Notation,” later in this
chapter).

Optionally, the DTD can specify a default value for the attribute. If the doc-
ument does not include the attribute, it is assumed to have the default
value. The default value can take one of the four following values:

• #REQUIRED means that a value must be provided in the document

• #IMPLIED means that if no value is provided, the application must use
its own default

• #FIXED followed by a value means that attribute value must be the
value declared in the DTD

• A literal value means that the attribute will take this value if no value
is given in the document.

N O T E
Information that remains constant between documents is an ideal candidate for
#FIXED attributes. For example, if prices are always given in dollars, you could declare
a price element as

<!ELEMENT price (#PCDATA)>

<!ATTLIST price currency NMTOKEN #FIXED “usd”>

When the application reads

<price>19.99</price>

in a document, it appears as though it reads

<price currency=”usd”>19.99</price>

The application has received additional information but it didn’t require additional
markup in the document!

Document Type Declaration
The document type declaration attaches a DTD to a document. Don’t con-
fuse the document type declaration with the document type definition
(DTD). The document type declaration has the form:

76 Chapter 3: XML Schemas

E X A M P L E

E X A M P L E

05 2429 CH03 2.29.2000 2:19 PM Page 76

<!DOCTYPE address-book SYSTEM “address-book.dtd”>

It consists of markup (<!DOCTYPE), the name of the top-level element
(address-book), the DTD (SYSTEM “address-book.dtd”) and a right angle
bracket. As Listing 3.1 illustrates, the document type declaration appears
at the beginning of the XML document, after the XML declaration.

The top-level element of the document is selected in the declaration.
Therefore, it is possible to create a document starting with any element in
the DTD. Listing 3.3 has the same DTD as Listing 3.1, but its top-level ele-
ment is an entry.
Listing 3.3: An Entry

<?xml version=”1.0”?>

<!DOCTYPE entry SYSTEM “address-book.dtd”>

<entry>

<name>John Doe</name>

<address>

<street>34 Fountain Square Plaza</street>

<region>OH</region>

<postal-code>45202</postal-code>

<locality>Cincinnati</locality>

<country>US</country>

</address>

<tel preferred=”true”>513-555-8889</tel>

<tel>513-555-7098</tel>

<email href=”mailto:jdoe@emailaholic.com”/>

</entry>

Internal and External Subsets
The DTD is divided into internal and external subsets. As the name
implies, the internal subset is inserted in the document itself, whereas the
external subset points to an external entity.

The internal and the external subsets have different rules for parameter
entities. The differences are explained in the section “General and
Parameter Entities,” later in this chapter.

The internal subset of the DTD is included between brackets in the docu-
ment type declaration. The external subset is stored in a separate entity
and referenced from the document type declaration.

77The DTD Syntax

E X A M P L E

05 2429 CH03 2.29.2000 2:19 PM Page 77

The internal subset of a DTD is stored in the document, specifically in the
document type declaration, as in
<!DOCTYPE address [

<!ELEMENT address (street,region?,postal-code,locality,country)>

<!ATTLIST address preferred (true | false) “false”>

<!ELEMENT street (#PCDATA)>

<!ELEMENT region (#PCDATA)>

<!ELEMENT postal-code (#PCDATA)>

<!ELEMENT locality (#PCDATA)>

<!ELEMENT country (#PCDATA)>
]>

The external subset is not stored in the document. It is referenced from the
document type declaration through an identifier as in the following exam-
ples:
<!DOCTYPE address-book SYSTEM “http://www.xmli.com/dtd/address-book.dtd”>

<!DOCTYPE address-book PUBLIC “-//Pineapplesoft//Address Book//EN”
➥“http://catwoman.pineapplesoft.com/dtd/address-book.dtd”>

<!DOCTYPE address-book SYSTEM “../dtds/address-book.dtd”>

There are two types of identifiers: system identifiers and public identifiers.
A keyword, respectively SYSTEM and PUBLIC, indicates the type of identi-
fier.

• A system identifier is a Universal Resource Identifier (URI) pointing to
the DTD. URI is a superset of URLs. For all practical purposes, a URI
is a URL.

• In addition to the system identifier, the DTD identifier might include
a public identifier. A public identifier points to a DTD recorded with
the ISO according to the rules of ISO 9070. Note that a system identi-
fier must follow the public identifier.

The system identifier is easy to understand. The XML processor must
download the document from the URI.

Public identifiers are used to manage local copies of DTDs. The XML
processor maintains a catalog file that lists public identifiers and their
associated URIs. The processor will use these URIs instead of the system
identifier.

78 Chapter 3: XML Schemas

E X A M P L E

E X A M P L E

E X A M P L E

05 2429 CH03 2.29.2000 2:19 PM Page 78

Obviously, if the URIs in the catalog point to local copies of the DTD, the
XML processor saves some downloads.

Listing 3.4 is an example of a catalog file.
Listing 3.4: A Catalog File

<XMLCatalog>

<Base HRef=”http://catwoman.pineapplesoft.com/dtd/”/>

<Map PublicId=”-//Pineapplesoft//Address Book//EN”

HRef=”address-book.dtd”/>

<Map PublicId=”-//Pineapplesoft//Article//EN”

HRef=”article.dtd”/>

<Map PublicId=”-//Pineapplesoft//Simple Order//EN”

HRef=”order.dtd”/>

<Extend Href=”http://www.w3.org/xcatalog/mastercat.xml”/>

</XMLCatalog>

Finally, note that a document can have both an internal and an external
subset as in
<!DOCTYPE address SYSTEM “address-content.dtd” [

<!ELEMENT address (street,region?,postal-code,locality,country)>

<!ATTLIST address preferred (true | false) “false”>

]>

Public Identifiers Format
The following public identifiers point to the address book:
“-//Pineapplesoft//Address Book//EN”

There are four parts, separated by “//”:

• The first character is + if the organization is registered with ISO,
- otherwise (most frequent).

• The second part is the owner of the DTD.

• The third part is the description of the DTD; spaces are allowed.

• The final part is the language (EN for English).

Standalone Documents
As you have seen, the DTD not only describes the document, but it can
affect how the application reads the document. Specifically, default and
fixed attribute values will add information to the document. Entities, which
are also declared in the DTD, modify the document.

79The DTD Syntax

E X A M P L E

E X A M P L E

05 2429 CH03 2.29.2000 2:19 PM Page 79

If all the entries that can influence the document are in the internal subset
of the DTD, the document is said to be standalone. In other words, an XML
processor does not need to download external entities to access all the infor-
mation (it might have to download external entities to validate the docu-
ment but that does not impact the content).

Conversely, if default attribute values or entities are declared in the
external subset of the document, then the XML processor has to read the
external subset, which might involve downloading more files.

Obviously, a standalone document is more efficient for communication over
a network because only one file needs to be downloaded. The XML declara-
tion has an attribute, standalone, that declares whether the document is a
standalone document or not. It accepts only two values: yes and no. The
default is no.
<?xml version=”1.0” standalone=”yes”?>

Note that a standalone document might have an external DTD subset but
the external subset cannot modify how the application reads the document.
Specifically, the external subset cannot

• declare entities

• declare default attribute values

• declare element content if the elements include spaces, such as for
indenting. The last rule is the easiest to break but it is logical: If the
DTD declares element content, then the processor reports indenting as
ignorable whitespaces; otherwise, it reports as normal whitespaces.

Why Schemas?
Why do we need DTDs or schemas in XML? There is a potential conflict
between flexibility and ease of use. As a rule, more flexible solutions are
more difficult, if only because you have to work your way through the
options. Specific solutions might also be optimized for certain tasks.

Let’s compare a closed solution, HTML, with an open one such as XML.
Both can be used to publish documents on the Web (XML serves many
other purposes as well). HTML has a fixed set of elements and software
can be highly optimized for it. For example, HTML editors offer templates,
powerful visual editing, image editing, document preview, and more.

XML, on the other hand, is a flexible solution. It does not define elements
but lets you, the developer, define the structure you need. Therefore, XML
editors must accept any document structure. There are very little opportu-
nities to optimize the XML editors because, by definition, they must be as
generic as XML is. HTML, the close solution, has an edge here.

80 Chapter 3: XML Schemas

E X A M P L E

05 2429 CH03 2.29.2000 2:19 PM Page 80

The DTD is an attempt to bridge that gap. DTD is a formal description of
the document. Software tools can read it and learn about the document
structure. Consequently, the tools can adapt themselves to better support
the document structure.

For example, some XML editors use DTDs to populate their element lists as
well as adopt default styling, based on the DTD. Finally, these XML editors
will guide the author by making certain the structure is followed.

In other words, the editor is a generic tool that accepts any XML document,
but it is configured for a specific application (read specific structure)
through the DTD.

Figure 3.1 is a screenshot from a DTD-aware editor. Notice that the editor
prompts for elements based on the structure.

81Why Schemas?

E X A M P L E

Figure 3.1: XML editor uses the DTD to guide the user.

Well-Formed and Valid Documents
XML recognizes two classes of documents: well-formed and valid. The
documents in Chapter 2 were well-formed, which in XML jargon means
they follow the XML syntax. Well-formed documents have the right mix of
start and end tags, attributes are properly quoted, entities are acceptable,
character sets are properly used, and so on.

Well-formed documents have no DTD, so the XML processor cannot check
their structure. It only checks that they follow the syntax rules.

05 2429 CH03 2.29.2000 2:19 PM Page 81

Valid documents are stricter. They not only follow the syntax rules, they
also comply with a specific structure, as described in a DTD.

Valid documents have a DTD. The XML processor will check that the docu-
ments are syntactically correct but it also ensures they follow the structure
described in the DTD.

Why two classes of documents? Why not have only valid documents? In
practice, some applications don’t need a DTD. Also, among those applica-
tions that do, they need the DTD only at specific steps in the process.

The DTD is useful during document creation, when it makes sense to
enforce the document structure. However, it is less useful after the creation.
For example, in most cases, it is useless to distribute the DTD with the doc-
ument. Indeed, a reader cannot fix errors in the structure of a document
(that’s the role of the author and editor), so what is a reader to do with the
DTD?

Relationship Between the DTD and the Document
Unless it’s overlooked, let me stress the relationship between the DTD and
the XML document. The role of the DTD is to specify which elements are
allowed where in the document.

The documents in Listings 3.6 and 3.7 are valid and respect the DTD in
Listing 3.5. The document in Listing 3.6 has a region element, whereas the
one in Listing 3.7 has none. It works because region is a conditional ele-
ment in the DTD.
Listing 3.5: The DTD

<!ELEMENT address (street,region?,postal-code,locality,country)>

<!ATTLIST address preferred (true | false) “false”>

<!ELEMENT street (#PCDATA)>

<!ELEMENT region (#PCDATA)>

<!ELEMENT postal-code (#PCDATA)>

<!ELEMENT locality (#PCDATA)>

<!ELEMENT country (#PCDATA)>

Listing 3.6: A Valid Document

<?xml version=”1.0”?>

<!DOCTYPE address SYSTEM “address.dtd”>

<address>

<street>34 Fountain Square Plaza</street>

<region>OH</region>

82 Chapter 3: XML Schemas

E X A M P L E

05 2429 CH03 2.29.2000 2:19 PM Page 82

<postal-code>45202</postal-code>

<locality>Cincinnati</locality>

<country>US</country>

</address>

Listing 3.7: Another Valid Document

<?xml version=”1.0”?>

<!DOCTYPE address SYSTEM “address.dtd”>

<address>

<street>Rue du Lombard 345</street>

<postal-code>5000</postal-code>

<locality>Namur</locality>

<country>Belgium</country>

</address>

However, Listings 3.8 and 3.9 are not valid documents. Listing 3.8 is miss-
ing a country element and country is not optional. In Listing 3.9, the
region element has a code attribute that is not declared in the DTD.
Listing 3.8: An Invalid Document

<?xml version=”1.0”?>

<!DOCTYPE address SYSTEM “address.dtd”>

<address>

<street>34 Fountain Square Plaza</street>

<region>OH</region>

<postal-code>45202</postal-code>

<locality>Cincinnati</locality>

</address>

Listing 3.9: An Invalid Document

<?xml version=”1.0”?>

<!DOCTYPE address SYSTEM “address.dtd”>

<address>

<street>34 Fountain Square Plaza</street>

<region code=”OH”>Ohio</region>

<postal-code>45202</postal-code>

<locality>Cincinnati</locality>

<country>US</country>

</address>

Another way to look at the relationship between DTD and document is to
say that the DTD describes the tree that is acceptable for the document.
Figure 3.2 shows the tree described by the DTD in Listing 3.5.

83Relationship Between the DTD and the Document

05 2429 CH03 2.29.2000 2:19 PM Page 83

Figure 3.2: The tree for the address

Benefits of the DTD
The main benefits of using a DTD are

• The XML processor enforces the structure, as defined in the DTD.

• The application accesses the document structure, such as to populate
an element list.

• The DTD gives hints to the XML processor—that is, it helps separate
indenting from content.

• The DTD can declare default or fixed values for attributes. This might
result in a smaller document.

Validating the Document
You can validate documents with an XML processor. I invite you to down-
load XML for Java from the IBM Web site at www.alphaworks.ibm.com.
There are other XML processors, but I will use the IBM one in Chapter 5,
“XSL Transformation,” and Chapter 8, “Alternative API: SAX.”

XML for Java is a Java application. You don’t need to be a Java program-
mer to use it, but you must have installed a Java runtime on your system.
You can download a Java runtime from java.sun.com.

Tools are sometimes updated. If the status of XML for Java changes, we
will post an update on the Macmillan Web site at www.quecorp.com/series/
by_example. If you experience a problem finding the tool, visit www.quecorp.
com/series/by_example.

The XML for Java comes with a command-line version that you can use to
validate documents against their DTD. To validate the document in Listing
3.1, save it in a file called “abook.xml,” save its DTD in the file called
“address-book.dtd,” and issue the command:
java -classpath c:\xml4j\xml4j.jar;c:\xml4j\xml4jsamples.jar

➥XJParse -p com.ibm.xml.parsers.ValidatingSAXParser abook.xml

This looks like a long and complex command line. If you are curious,
Appendix A breaks it into smaller pieces.

This command assumes XML for Java is installed in the c:\xml4j directory.
You might have to update the classpath for your system. If everything goes
well, the result is a message similar to

84 Chapter 3: XML Schemas

O U T P U T

E X A M P L E

05 2429 CH03 2.29.2000 2:19 PM Page 84

abook.xml: 1420 ms (24 elems, 9 attrs, 105 spaces, 97 chars)

If the document contains errors (either syntax errors or it does not respect
the structure outlined in the DTD), you will have an error message.

C A U T I O N
The IBM for Java processor won’t work unless you have installed a Java runtime.

If there is an error message similar to “Exception in thread “main”
java.lang.NoClassDefFoundError,” it means that either the classpath is incorrect
(make sure it points to the right directory) or that you typed an incorrect class name for
XML for Java (XJParser and com.ibm.xml.parsers.ValidatingSAXParser).

If there is an error message similar to “Exception in thread “main”
java.io.FileNotFoundException: d:\xml\abook.xm”, it means that the filename is incor-
rect (in this case, it points to “abook.xm” instead of “abook.xml”).

T I P
You can save some typing with batch files (under Windows) or shell scripts (under
UNIX). Adapt the path to your system, replace the filename (abook.xml) with “%1” and
save in a file called “validate.bat”. The file should contain the following command:

java -classpath c:\xml4j\xml4j.jar;c:\xml4j\xml4jsamples.jar

➥XJParse -p com.ibm.xml.parsers.ValidatingSAXParser %1

Now you can validate any XML file with the following (shorter) command:

validate abook.xml

Entities and Notations
As already mentioned in the previous chapter, XML doesn’t work with files
but with entities. Entities are the physical representation of XML docu-
ments. Although entities usually are stored as files, they need not be.

In XML the document, its DTD, and the various files it references (images,
stock-phrases, and so on) are entities. The document itself is a special
entity because it is the starting point for the XML processor. The entity of
the document is known as the document entity.

XML does not dictate how to store and access entities. This is the task of
the XML processor and it is system specific. The XML processor might have
to download entities or it might use a local catalog file to retrieve the enti-
ties.

In Chapter 7, “The Parser and DOM,” you’ll see how SAX parsers (a SAX
parser is one example of an XML processor) enable the application to
retrieve entities from databases or other sources.

85Entities and Notations

05 2429 CH03 2.29.2000 2:19 PM Page 85

XML has many types of entities, classified according to three criteria:
general or parameter entities, internal or external entities, and parsed or
unparsed entities.

General and Parameter Entities
General entity references can appear anywhere in text or markup. In prac-
tice, general entities are often used as macros, or shorthand for a piece of
text. External general entities can reference images, sound, and other docu-
ments in non-XML format. Listing 3.10 shows how to use a general entity
to replace some text.
Listing 3.10: General Entity

<?xml version=”1.0”?>

<!DOCTYPE address-book [

<!ENTITY jacksmith

‘<entry>

<name><fname>Jack</fname><lname>Smith</lname></name>

<tel>513-555-3465</tel>

<email href=”mailto:jsmith@emailaholic.com”/>

</entry>’>

]>

<address-book>

&jacksmith;

</address-book>

General entities are declared with the markup <!ENTITY followed by the
entity name, the entity definition, and the customary right angle bracket.

T I P
General entities also are often used to associate a mnemonic with character refer-
ences as in

<!ENTITY icirc “î”>

As we saw in Chapter 2, “The XML Syntax,” the following entities are pre-
defined in XML: “<”, “&”, “>”, “'”, and “"”.

Parameter entity references can only appear in the DTD. There is an extra
% character in the declaration before the entity name. Parameter entity ref-
erences also replace the ampersand with a percent sign as in
<!ENTITY % boolean “(true | false) ‘false’”>

<!ELEMENT tel (#PCDATA)>

<!ATTLIST tel preferred %boolean;>

86 Chapter 3: XML Schemas

E X A M P L E

05 2429 CH03 2.29.2000 2:19 PM Page 86

Parameter entities have many applications. You will learn how to use para-
meter entities in the following sections: “Internal and External Entities,”
“Conditional Sections,” “Designing DTDs from an Object Model.”

C A U T I O N
The previous example is valid only in the external subset of a DTD. In the internal sub-
set, parameter entities can appear only where markup declaration can appear.

Internal and External Entities
XML also distinguishes between internal and external entities. Internal
entities are stored in the document, whereas external entities point to a
system or public identifier. Entity identifiers are identical to DTD identi-
fiers (in fact, the DTD is a special entity).

The entities in the previous sections were internal entities because their
value was declared in the entity definition. External entities, on the other
hand, reference content that is not part of the current document.

T I P
External entities might start with an XML declaration—for example, to declare a special
encoding.

<?xml version=”1.0” encoding=”ISO-8859-1”?>

External general entities can be parsed or unparsed. If parsed, the entity
must contain valid XML text and markup. External parsed entities are
used to share text across several documents, as illustrated by Listing 3.11.

In Listing 3.11, the various entries are stored in separate entities (separate
files). The address book combines them in a document.
Listing 3.11: Using External Entities

<?xml version=”1.0”?>

<!DOCTYPE address-book [

<!ENTITY johndoe SYSTEM “johndoe.ent”>

<!ENTITY jacksmith SYSTEM “jacksmith.ent”>

]>

<address-book>

&johndoe;

&jacksmith;

</address-book>

Where the file “johndoe.ent” contains:
<entry>

<name>John Doe</name>

87Entities and Notations

E X A M P L E

05 2429 CH03 2.29.2000 2:19 PM Page 87

<address>

<street>34 Fountain Square Plaza</street>

<region>OH</region>

<postal-code>45202</postal-code>

<locality>Cincinnati</locality>

<country>US</country>

</address>

</entry>

And “jacksmith.ent” contains
<entry>

<name><fname>Jack</fname><lname>Smith</lname></name>

<tel>513-555-3465</tel>

<email href=”mailto:jsmith@emailaholic.com”/>

</entry>

However, unparsed entities are probably the most helpful external general
entities. Unparsed entities are used for non-XML content, such as images,
sound, movies, and so on. Unparsed entities provide a mechanism to load
non-XML data into a document.

The XML processor treats the unparsed entity as an opaque block, of
course. By definition, it does not attempt to recognize markup in unparsed
entities.

A notation must be associated with unparsed entities. Notations are
explained in more detail in the next section but, in a nutshell, they identify
the type of a document, such as GIF, JPEG, or Windows bitmap for images.
The notation is introduced by the NDATA keyword:
<!ENTITY logo SYSTEM “http://catwoman.pineapplesoft.com/logo.gif”

NDATA GIF>

External parameter entities are similar to external general entities.
However, because parameter entities appear in the DTD, they must contain
valid XML markup.

External parameter entities are often used to insert the content of a file in
the markup. Let’s suppose we have created a list of general entities for
every country, as in Listing 3.12 (saved in the file countries.ent).
Listing 3.12: A List of Entities for the Countries

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!ENTITY be “Belgium”>

88 Chapter 3: XML Schemas

E X A M P L E

E X A M P L E

05 2429 CH03 2.29.2000 2:19 PM Page 88

<!ENTITY ch “Switzerland”>

<!ENTITY de “Germany”>

<!ENTITY it “Italy”>

<!ENTITY jp “Japan”>

<!ENTITY uk “United Kingdom”>

<!ENTITY us “United States”>

<!-- and more -->

Creating such a list is a large effort. We would like to reuse it in all our
documents. The construct illustrated in Listing 3.13 pulls the list of coun-
tries from countries.ent in the current document. It declares a parameter
entity as an external entity and it immediately references the parameter
entity. This effectively includes the external list of entities in the DTD of
the current document.
Listing 3.13: Using External Parameter Entities

<?xml version=”1.0”?>

<!DOCTYPE address SYSTEM “address.dtd” [

<!ENTITY % countries SYSTEM “countries.ent”>

%countries;

]>

<address>

<street>34 Fountain Square Plaza</street>

<region>Ohio</region>

<postal-code>45202</postal-code>

<locality>Cincinnati</locality>

<country>&us;</country>

</address>

C A U T I O N
Given the limitation on parameter entities in the internal subset of the DTD, this is the
only sensible application of parameter entities in the internal subset.

Notation
Because the XML processor cannot process unparsed entities, it needs a
mechanism to associate them with the proper tool. In the case of an image,
it could be an image viewer.

Notation is simply a mechanism to declare the type of unparsed entities
and associate them, through an identifier, with an application.
<!NOTATION GIF89a PUBLIC “-//CompuServe//NOTATION Graphics

➥ Interchange Format 89a//EN” “c:\windows\kodakprv.exe”>

89Entities and Notations

E X A M P L E

E X A M P L E

05 2429 CH03 2.29.2000 2:19 PM Page 89

This declaration is unsafe because it points to a specific application. The
application might not be available on another computer or it might be
available but from another path. If your system has defined the appropriate
file associations, you can get away with a declaration such as
<!NOTATION GIF89a SYSTEM “GIF”>

<!NOTATION GIF89a SYSTEM “image/gif”>

The first notation uses the filename, while the second uses the MIME type.

Managing Documents with Entities
External entities are helpful to modularize and help manage large DTDs
and large document sets.

The idea is very simple: Try to divide your work into smaller pieces that are
more manageable. Save each piece in a separate file and include them in
your document with external entities.

Also try to identify pieces that you can reuse across several applications. It
might be a list of entities (such as the list of countries) or a list of notations,
or some text (such as a copyright notice that must appear on every docu-
ment). Place them in separate files and include them in your documents
through external entities.

Figure 3.3 shows how it works. Notice that some files are shared across
several documents.

90 Chapter 3: XML Schemas

E X A M P L E

Figure 3.3: Using external entities to manage large projects

This is like eating a tough steak: You have to cut the meat into smaller
pieces until you can chew it.

05 2429 CH03 2.29.2000 2:19 PM Page 90

Conditional Sections
As your DTDs mature, you might have to change them in ways that are
partly incompatible with previous usage. During the migration period,
when you have new and old documents, it is difficult to maintain the DTD.

To help you manage migrations and other special cases, XML provides con-
ditional sections. Conditional sections are included or excluded from the
DTD depending on the value of a keyword. Therefore, you can include or
exclude a large part of a DTD by simply changing one keyword.

Listing 3.13 shows how to use conditional sections. The strict parameter
entity resolves to INCLUDE. The lenient parameter entity resolves to IGNORE.
The application will use the definition of name in the %strict; section
((fname, lname)) and ignores the definition in the %lenient; section
((#PCDATA | fname | lname)*).
Listing 3.13: Using Conditional Sections

<!ENTITY % strict ‘INCLUDE’>

<!ENTITY % lenient ‘IGNORE’>

<![%strict;[

<!-- a name is a first name and a last name -->

<!ELEMENT name (fname, lname)>

]]>

<![%lenient;[

<!-- name is made of string, first name

and last name. This is a very flexible

model to accommodate exotic name -->

<!ELEMENT name (#PCDATA | fname | lname)*>

]]>

However, to revert to the lenient definition of name, it suffices to invert the
parameter entity declaration:
<!ENTITY % strict ‘IGNORE’>

<!ENTITY % lenient ‘INCLUDE’>

Designing DTDs
Now that you understand what DTDs are for and that you understand how
to use them, it is time to look at how to create DTDs. DTD design is a cre-
ative and rewarding activity.

91Designing DTDs

E X A M P L E

05 2429 CH03 2.29.2000 2:19 PM Page 91

It is not possible, in this section, to cover every aspect of DTD design. Books
have been devoted to that topic. Use this section as guidance and remember
that practice makes proficient.

Yet, I would like to open this section with a plea to use existing DTDs when
possible. Next, I will move into two examples of the practical design of prac-
tically designing DTDs.

Main Advantages of Using Existing DTDs
There are many XML DTDs available already and it seems more are being
made available every day. With so many DTDs, you might wonder whether
it’s worth designing your own.

I would argue that, as much as possible, you should try to reuse existing
DTDs. Reusing DTDs results in multiple savings. Not only do you not have
to spend time designing the DTD, but also you don’t have to maintain and
update it.

However, designing an XML application is not limited to designing a DTD.
As you will learn in Chapter 5, “XSL Transformation,” and subsequent
chapters, you might also have to design style sheets, customize tools such
as editors, and/or write special code using a parser.

This adds up to a lot of work. And it follows the “uh, oh” rule of project
planning: Uh, oh, it takes more work than I thought.” If at all possible, it
pays to reuse somebody else’s DTD.

The first step in a new XML project should be to search the Internet for
similar applications. I suggest you start at www.oasis-open.org/sgml/
xml.html. The site, maintained by Robin Cover, is the most comprehensive
list of XML links.

In practice, you are likely to find DTDs that almost fit your needs but
aren’t exactly what you are looking for. It’s not a problem because XML is
extensible so it is easy to take the DTD developed by somebody else and
adapt it to your needs.

Designing DTDs from an Object Model
I will take two examples of DTD design. In the first example, I will start
from an object model. This is the easiest solution because you can reuse the
objects defined in the model. In the second example, I will create a DTD
from scratch.

Increasingly, object models are made available in UML. UML is the Unified
Modeling Language (yes, there is an ML something that does not stand for
markup language). UML is typically used for object-oriented applications
such as Java or C++ but the same models can be used with XML.

92 Chapter 3: XML Schemas

E X A M P L E

05 2429 CH03 2.29.2000 2:19 PM Page 92

An object model is often available when XML-enabling an existing Java or
C++ application. Figure 3.4 is a (simplified) object model for bank accounts.
It identifies the following objects:

• “Account” is an abstract class. It defines two properties: the balance
and a list of transactions.

• “Savings” is a specialized “Account” that represents a savings account;
interest is an additional property.

• “Checking” is a specialized “Account” that represents a checking
account; rate is an additional property.

• “Owner” is the account owner. An “Account” can have more than one
“Owner” and an “Owner” can own more than one “Account.”

93Designing DTDs from an Object Model

Figure 3.4: The object model

The application we are interested in is Web banking. A visitor would like to
retrieve information about his or her various bank accounts (mainly his or
her balance).

The first step to design the DTD is to decide on the root-element. The top-
level element determines how easily we can navigate the document and
access the information we are interested in. In the model, there are two
potential top-level elements: Owner or Account.

Given we are doing a Web banking application, Owner is the logical choice
as a top element. The customer wants his list of accounts.

Note that the choice of a top-level element depends heavily on the applica-
tion. If the application were a financial application, examining accounts, it
would have been more sensible to use account as the top-level element.

At this stage, it is time to draw a tree of the DTD under development. You
can use a paper, a flipchart, a whiteboard, or whatever works for you (I
prefer flipcharts).

In drawing the tree, I simply create an element for every object in the
model. Element nesting is used to model object relationship.

05 2429 CH03 2.29.2000 2:19 PM Page 93

Figure 3.5 is a first shot at converting the model into a tree. Every object in
the original model is now an element. However, as it turns out, this tree is
both incorrect and suboptimal.

94 Chapter 3: XML Schemas

Figure 3.5: A first tree for the object model

Upon closer examination, the tree in Figure 3.5 is incorrect because, in the
object model, an account can have more than one owner. I simply cannot
add the owner element into the account because this would lead to infinite
recursion where an account includes its owner, which itself includes the
account, which includes the owner, which… You get the picture.

The solution is to create a new element co-owner. To avoid confusion, I
decided to rename the top-level element from owner to accounts. The new
tree is in Figure 3.6.

Figure 3.6: The corrected tree

The solution in Figure 3.6 is a correct implementation of the object model.
To evaluate how good it is, I like to create a few sample documents that fol-
low the same structure. Listing 3.14 is a sample document I created.
Listing 3.14: Sample Document

<?xml version=”1.0”?>

<accounts>

<co-owner>John Doe</co-owner>

<co-owner>Jack Smith</co-owner>

<account>

<checking>170.00</checking>

</account>

<co-owner>John Doe</co-owner>

<account>

<savings>5000.00</savings>

</account>

</accounts>

This works but it is inefficient. The checking and savings elements are com-
pletely redundant with the account element. It is more efficient to treat

05 2429 CH03 2.29.2000 2:19 PM Page 94

account as a parameter entity that groups the commonality between the
various accounts. Figure 3.7 shows the result. In this case, the parameter
entity is used to represent a type.

95Designing DTDs from an Object Model

Figure 3.7: The tree, almost final

We’re almost there. Now we need to flesh out the tree by adding the object
properties. I chose to create new elements for every property (see the fol-
lowing section “On Elements Versus Attributes”).

Figure 3.8 is the final result. Listing 3.15 is a document that follows the
structure. Again, it’s useful to write a few sample documents to check
whether the DTD makes sense. I can find no problems with this structure
in Listing 3.15.

Figure 3.8: The final tree

Listing 3.15: A Sample Document

<?xml version=”1.0”?>

<accounts>

<co-owner>John Doe</co-owner>

<co-owner>Jack Smith</co-owner>

<checking>

<balance>170.00</balance>

<transaction>-100.00</transaction>

<transaction>-500.00</transaction>

<fee>4.00</fee>

</checking>

<co-owner>John Doe</co-owner>

<savings>

<balance>5000.00</balance>

<interest>212.50</interest>

</savings>

</accounts>

05 2429 CH03 2.29.2000 2:19 PM Page 95

Having drawn the tree, it is trivial to turn it into a DTD. It suffices to list
every element in the tree and declare their content model based on their
children. The final DTD is in Listing 3.16.
Listing 3.16: The DTD for Banking

<!ENTITY % account “(balance,transaction*)”>

<!ELEMENT accounts (co-owner+,(checking | savings))+>

<!ELEMENT co-owner (#PCDATA)>

<!ELEMENT checking (%account;,fee)>

<!ELEMENT savings (%account;,interest)>

<!ELEMENT fee (#PCDATA)>

<!ELEMENT interest (#PCDATA)>

<!ELEMENT balance (#PCDATA)>

<!ELEMENT transaction (#PCDATA)>

Now I have to publish this DTD under a URI. I like to place versioning
information in the URI (version 1.0, and so on) because if there is a new
version of the DTD, it gets a different URI with the new version. It means
the two DTDs can coexist without problem.

It also means that the application can retrieve the URI to know which ver-
sion is in use.
http://catwoman.pineapplesoft.com/dtd/accounts/1.0/accounts.dtd

If I ever update the DTD (it’s a very simplified model so I can think of
many missing elements), I’ll create a different URI with a different version
number:
http://catwoman.pineapplesoft.com/dtd/accounts/2.0/accounts.dtd

You can see how easy it is to create an XML DTD from an object model.
This is because XML tree-based structure is a natural mapping for objects.

As more XML applications will be based on object-oriented technologies
and will have to integrate with object-oriented systems written in Java,
CORBA, or C++, I expect that modeling tools will eventually create DTDs
automatically.

Already modeling tools such as Rational Rose or Together/J can create Java
classes automatically. Creating DTDs seems like a logical next step.

On Elements Versus Attributes
As you have seen, there are many choices to make when designing a DTD.
Choices include deciding what will become of an element, a parameter
entity, an attribute, and so on.

96 Chapter 3: XML Schemas

05 2429 CH03 2.29.2000 2:19 PM Page 96

Deciding what should be an element and what should be an attribute is a
hot debate in the XML community. We will revisit this topic in Chapter 10,
“Modeling for Flexibility,” but here are some guidelines:

• The main argument in favor of using attributes is that the DTD offers
more controls over the type of attributes; consequently, some people
argue that object properties should be mapped to attributes.

• The main argument for elements is that it is easier to edit and view
them in a document. XML editors and browsers in general have more
intuitive handling of elements than of attributes.

I try to be pragmatic. In most cases, I use element for “major” properties of
an object. What I define as major is all the properties that you manipulate
regularly.

I reserve attributes for ancillary properties or properties that are related to
a major property. For example, I might include a currency indicator as an
attribute to the balance.

Creating the DTD from Scratch
Creating a DTD without having the benefit of an object model results in
more work. The object model provides you with ready-made objects that you
just have to convert in XML. It also has identified the properties of the
objects and the relationships between objects.

However, if you create a DTD from scratch, you have to do that analysis as
well.

A variant is to modify an existing DTD. Typically, the underlying DTD does
not support all your content (you need to add new elements/attributes) or is
too complex for your application (you need to remove elements/attributes).

This is somewhat similar to designing a DTD from scratch in the sense that
you will have to create sample documents and analyze them to understand
how to adapt the proposed DTD.

On Flexibility
When designing your own DTD, you want to prepare for evolution. We’ll
revisit this topic in Chapter 10 but it is important that you build a model
that is flexible enough to accommodate extensions as new content becomes
available.

The worst case is to develop a DTD, create a few hundred or a few thou-
sand documents, and suddenly realize that you are missing a key piece of
information but that you can’t change your DTD to accommodate it. It’s bad
because it means you have to convert your existing documents.

97Creating the DTD from Scratch

05 2429 CH03 2.29.2000 2:19 PM Page 97

To avoid that trap you want to provide as much structural information as
possible but not too much. The difficulty, of course, is in striking the right
balance between enough structural information and too much structural
information.

You want to provide enough structural information because it is very easy
to degrade information but difficult to clean degraded information.

Compare it with a clean, neatly sorted stack of cards on your desk. It takes
half a minute to knock it down and shuffle it. Yet it will take the best part
of one day to sort the cards again.

The same is true with electronic documents. It is easy to lose structural
information when you create the document. And if you lose structural infor-
mation, it will be very difficult to retrieve it later on.

Consider Listing 3.17, which is the address book in XML. The information
is highly structured—the address is broken down into smaller components:
street, region, and so on.
Listing 3.17: An Address Book in XML

<?xml version=”1.0”?>

<!DOCTYPE address-book SYSTEM “address-book.dtd”>

<!-- loosely inspired by vCard 3.0 -->

<address-book>

<entry>

<name>John Doe</name>

<address>

<street>34 Fountain Square Plaza</street>

<region>OH</region>

<postal-code>45202</postal-code>

<locality>Cincinnati</locality>

<country>US</country>

</address>

<tel preferred=”true”>513-555-8889</tel>

<tel>513-555-7098</tel>

<email href=”mailto:jdoe@emailaholic.com”/>

</entry>

<entry>

<name><fname>Jack</fname><lname>Smith</lname></name>

<tel>513-555-3465</tel>

<email href=”mailto:jsmith@emailaholic.com”/>

</entry>

</address-book>

98 Chapter 3: XML Schemas

E X A M P L E

05 2429 CH03 2.29.2000 2:19 PM Page 98

Listing 3.18 is the same information as text. The structure is lost and,
unfortunately, it will be difficult to restore the structure automatically. The
software would have to be quite intelligent to go through Listing 3.18 and
retrieve the entry boundaries as well as break the address in its compo-
nents.
Listing 3.18: The Address Book in Plain Text

John Doe

34 Fountain Square Plaza

Cincinnati, OH 45202

US

513-555-8889 (preferred)

513-555-7098

jdoe@emailaholic.com

Jack Smith

513-555-3465

jsmith@emailaholic.com

However, as you design your structure, be careful that it remains usable.
Structures that are too complex or too strict will actually lower the quality
of your document because it encourages users to cheat.

Consider how many electronic commerce Web sites want a region, province,
county, or state in the buyer address. Yet many countries don’t have the
notion of region, province, county, or state or, at least, don’t use it for their
addresses.

Forcing people to enter information they don’t have is asking them to cheat.
Keep in mind the number one rule of modeling: Changes will come from the
unexpected. Chances are that, if your application is successful, people will
want to include data you had never even considered. How often did I
include for “future extensions” that were never used? Yet users came and
asked for totally unexpected extensions.

There is no silver bullet in modeling. There is no foolproof solution to strike
the right balance between extensibility, flexibility, and usability. As you
grow more experienced with XML and DTDs, you also will improve your
modeling skills.

My solution is to define a DTD that is large enough for all the content
required by my application but not larger. Still, I leave hooks in the DTD—
places where it would be easy to add a new element, if required.

99Creating the DTD from Scratch

05 2429 CH03 2.29.2000 2:19 PM Page 99

Modeling an XML Document
The first step in modeling XML documents is to create documents. Because
we are modeling an address book, I took a number of business cards and
created documents with them. You can see some of the documents I created
in Listing 3.20.
Listing 3.20: Examples of XML Documents

<address-book>

<entry>

<name><fname>John</fname><lname>Doe</lname></name>

<address>

<street>34 Fountain Square Plaza</street>

<state>OH</state>

<zip>45202</zip>

<locality>Cincinnati</locality>

<country>US</country>

</address>

<tel>513-555-8889</tel>

<email href=”mailto:jdoe@emailaholic.com”/>

</entry>

<entry>

<name><fname>Jean</fname><lname>Dupont</lname></name>

<address>

<street>Rue du Lombard 345</street>

<postal-code>5000</postal-code>

<locality>Namur</locality>

<country>Belgium</country>

</address>

<email href=”mailto:jdupont@emailaholic.com”/>

</entry>

<entry>

<name><fname>Olivier</fname><lname>Rame</lname></name>

<email href=”mailto:orame@emailaholic.com”/>

</entry>

</address-book>

As you can see, I decided early on to break the address into smaller compo-
nents. In making these documents, I tried to reuse elements over and over
again. Very early in the project, it was clear there would be a name ele-
ment, an address element, and more.

100 Chapter 3: XML Schemas

E X A M P L E

05 2429 CH03 2.29.2000 2:19 PM Page 100

Also, I decided that addresses, phone numbers, and so on would be condi-
tional. I have incomplete entries in my address book and the XML version
must be able to handle it as well.

I looked at commonalties and I found I could group postal code and zip code
under one element. Although they have different names, they are the same
concepts.

This is the creative part of modeling when you list all possible elements,
group them, and reorganize them until you achieve something that makes
sense. Gradually, a structure appears.

Building the DTD from this example is easy. I first draw a tree with all the
elements introduced in the document so far, as well as their relationship. It
is clear that some elements such as state are optional. Figure 3.9 shows the
tree.

101Creating the DTD from Scratch

Figure 3.9: The updated tree

This was fast to develop because the underlying model is simple and well
known. For a more complex application, you would want to spend more
time drafting documents and trees.

At this stage, it is a good idea to compare my work with other similar
works. In this case, I choose to compare with the vCard standard (RFC
2426). vCard (now in its third version) is a standard for electronic business
cards.

vCard is a very extensive standard that lists all the fields required in an
electronic business card. vCard, however, is too complicated for my needs so
I don’t want to simply duplicate that work.

By comparing the vCard structure with my structure, I realized that names
are not always easily broken into first and last names, particularly foreign
names. I therefore provided a more flexible content model for names.

I also realized that address, phone, fax number, and email address might
repeat. Indeed, it didn’t show up in my sample of business cards but there
are people with several phone numbers or email addresses. I introduced a
repetition for these as well as an attribute to mark the preferred address.
The attribute has a default value of false.

05 2429 CH03 2.29.2000 2:19 PM Page 101

In the process, I picked the name “region” for the state element. For some
reason, I find region more appealing.

Comparing my model with vCard gave me the confidence that the simple
address book can cope with most addresses used. Figure 3.10 is the result.

T I P
There is a group working on the XML-ization of the vCard standard. Its approach is dif-
ferent: It starts with vCard as its model, whereas this example starts from an existing
document and uses vCard as a check.

Yet, it is interesting to compare the XML version of vCard (available from www.imc.
org/ietf-vcard-xml) with the DTD in this chapter. It proves that there is more than
one way to skin a cat.

102 Chapter 3: XML Schemas

Figure 3.10: The final tree

Again converting the tree in a DTD is trivial. Listing 3.21 shows the result.

Listing 3.21: A DTD for the Address Book

<!ENTITY % boolean “(true | false) ‘false’”>

<!-- top-level element, the address book

is a list of entries -->

<!ELEMENT address-book (entry+)>

<!-- an entry is a name followed by

addresses, phone numbers, etc. -->

<!ELEMENT entry (name,address*,tel*,fax*,email*)>

<!-- name is made of string, first name

and last name. This is a very flexible

model to accommodate exotic name -->

<!ELEMENT name (#PCDATA | fname | lname)*>

<!ELEMENT fname (#PCDATA)>

05 2429 CH03 2.29.2000 2:19 PM Page 102

<!ELEMENT lname (#PCDATA)>

<!-- definition of the address structure

if several addresses, the preferred

attribute signals the “default” one -->

<!ELEMENT address (street,region?,postal-code,locality,country)>

<!ATTLIST address preferred (true | false) “false”>

<!ELEMENT street (#PCDATA)>

<!ELEMENT region (#PCDATA)>

<!ELEMENT postal-code (#PCDATA)>

<!ELEMENT locality (#PCDATA)>

<!ELEMENT country (#PCDATA)>

<!-- phone, fax and email, same preferred

attribute as address -->

<!ELEMENT tel (#PCDATA)>

<!ATTLIST tel preferred (true | false) “false”>

<!ELEMENT fax (#PCDATA)>

<!ATTLIST fax preferred (true | false) “false”>

<!ELEMENT email EMPTY>

<!ATTLIST email href CDATA #REQUIRED

preferred (true | false) “false”>

Naming of Elements
Again, modeling requires imagination. One needs to be imaginative and
keep an open mind during the process. Modeling also implies making deci-
sions on the name of elements and attributes.

As you can see, I like to use meaningful names. Others prefer to use mean-
ingless names or acronyms. Again, as is so frequent in modeling, there are
two schools of thought and both have very convincing arguments. Use what
works better for you but try to be consistent.

In general, meaningful names

• are easier to debug

• provide some level of document for the DTD.

However, a case can be made for acronyms:

• Acronyms are shorter, and therefore more efficient.

• Acronyms are less language-dependent.

103Creating the DTD from Scratch

05 2429 CH03 2.29.2000 2:19 PM Page 103

• Name choice should not be a substitute for proper documentation;
meaningless tags and acronyms might encourage you to properly docu-
ment the application.

A Tool to Help
I find drawing trees on a piece of paper an exercise in frustration. No
matter how careful you are, after a few rounds of editing, the paper is
unreadable and modeling often requires several rounds of editing!

Fortunately, there are very good tools on the market to assist you while you
write DTDs. The trees in this book were produced by Near & Far from
Microstar (www.microstar.com).

Near & Far is as intuitive as a piece of paper but, even after 1,000 changes,
the tree still looks good. Furthermore, to convert the tree in a DTD, it suf-
fices to save it. No need to remember the syntax, which is another big plus.

Figure 3.11 is a screenshot of Near & Far.

104 Chapter 3: XML Schemas

E X A M P L E

Figure 3.11: Using a modeling tool

New XML Schemas
The venerable DTD is very helpful. It provides valuable services to the
application developer and the XML author. However, DTD originated in
publishing and it shows.

05 2429 CH03 2.29.2000 2:19 PM Page 104

For one thing, content is limited to textual content. Also, it is difficult to
put in repetition constraints: You cannot say that an element can appear
only four times. It’s 0, 1, or infinite.

Furthermore, the DTD is based on a special syntax that is different from
the syntax for XML documents. It means that it is not possible to use XML
tools, such as editors or browsers, to process DTD!

These so-called limitations of the DTD are inherited directly from SGML.
XML was originally designed as a subset of SGML and therefore it could
not differ too much from the SGML DTD.

However, as XML takes a life of its own, people would like a new, more
modern, replacement for the DTD. Various groups have made several pro-
posals. Collectively, these proposals are known as schemas. The details of
the proposals vary greatly but all:

• propose to use the same syntax as XML documents

• improve XML data typing to support not only strings but also num-
bers, dates, and so on

• introduce object-oriented concepts such as inheritance (an element
could inherit from another)

The W3C has formed a working group to develop a new standard based
on the existing proposals. At the time of this writing, the effort has just
started and little is known about the final result.

You can find up-to-date information on new XML schemas on the W3C Web
site at www.w3.org/XML.

The main proposals being considered are

• XML-Data, which offers types inspired from SQL types.

• DCD (Document Content Description), positioned as a simplified ver-
sion of XML-Data.

• SOX (Schema for Object-oriented XML), as the name implies, is heavy
on object-orientation aspects.

• DDML (Document Definition Markup Language), developed by the
XML-Dev mailing list. It is intended as a simple solution to form a
basis for future work.

What’s Next
The next chapter is dedicated to the namespace proposal. Namespace is an
often-overlooked but very useful standard that greatly enhances XML
extensibility.

105What's Next

05 2429 CH03 2.29.2000 2:19 PM Page 105

06 2429 CH04 2.29.2000 2:20 PM Page 106

4

Namespaces
The previous two chapters introduced the XML recommendation as pub-
lished by the W3C. You learned what an XML document is and what it can
be used for. You also have seen how to write an XML document and you
learned about modeling XML documents with DTDs.

This chapter complements the previous chapters with a discussion on XML
namespaces. You will learn

• how namespaces complement XML extensibility

• how to use namespaces in documents

• how to use namespaces in DTD

06 2429 CH04 2.29.2000 2:20 PM Page 107

The Problem Namespaces Solves
XML is extensible. So it says in the name: eXtensible Markup Language.
The problem is that extensibility does not come free. In a distributed envi-
ronment, extensibility must be managed to avoid conflicts. Namespaces is a
solution to help manage XML extensibility.

Namespace can be defined as a mechanism to identify of XML elements. It
places the name of the elements in a more global context: the namespace.

The namespace recommendation, published by the W3C, is available at
www.w3.org/TR/REC-xml-names.

The namespace recommendation is relatively thin. The concepts are not dif-
ficult, either. Unfortunately, this means that namespaces are often over-
looked! Don’t make that mistake; namespaces are essential for many XML
applications.

Let’s suppose you decide to publish your bookmarks. (There is heavy compe-
tition from Yahoo! but let’s ignore this for a moment.) Listing 4.1 shows
what it might look like in XML. As a standalone document, Listing 4.1
works perfectly.
Listing 4.1: A List of Resources in XML

<?xml version=”1.0”?>

<references>

<name>Macmillan</name>

<link href=”http://www.mcp.com”/>

<name>Pineapplesoft Link</name>

<link href=”http://www.pineapplesoft.com/newsletter”/>

<name>XML.com</name>

<link href=”http://www.xml.com”/>

<name>Comics.com</name>

<link href=”http://www.comics.com”/>

<name>Fatbrain.com</name>

<link href=”http://www.fatbrain.com”/>

<name>ABC News</name>

<link href=”http://www.abcnews.com”/>

</references>

✔ Chapter 5, “XSL Transformation,” page 125 and Chapter 6, “XSL Formatting Objects and

Cascading Style Sheet,” page 161 will show you how to publish this document on a Web site.

108 Chapter 4: Namespaces

E X A M P L E

06 2429 CH04 2.29.2000 2:20 PM Page 108

In practice, however, documents are seldom standalone. In a collaborative
environment like the Web, people build on one another’s work. Somebody
might take your list and rate it. The result would be Listing 4.2 (admit-
tedly, I’m biased).
Listing 4.2: The References with Quality Ratings

<?xml version=”1.0”?>

<references>

<name>Macmillan</name>

<link href=”http://www.mcp.com”/>

<rating>5 stars</rating>

<name>Pineapplesoft Link</name>

<link href=”http://www.pineapplesoft.com/newsletter”/>

<rating>5 stars</rating>

<name>XML.com</name>

<link href=”http://www.xml.com”/>

<rating>4 stars</rating>

<name>Comics.com</name>

<link href=”http://www.comics.com”/>

<rating>5 stars</rating>

<name>Fatbrain.com</name>

<link href=”http://www.fatbrain.com”/>

<rating>4 stars</rating>

<name>ABC News</name>

<link href=”http://www.abcnews.com”/>

<rating>3 stars</rating>

</references>

Listing 4.2 is the same document with one new element: rating. As we saw
in the last chapter, it is often desirable to extend an existing document to
convey new information instead of designing new schemas from scratch.

Problems occur, however, if the extension is not managed. Suppose some-
body else decides to rate the list with parental advisory. Listing 4.3 shows
the result (ABC News might report on violence, hence its PG rating).
Listing 4.3: Another Meaning for Rating

<?xml version=”1.0”?>

<references>

<name>Macmillan</name>

<link href=”http://www.mcp.com”/>

<rating>G</rating>

109The Problem Namespaces Solves

E X A M P L E

E X A M P L E

continues

06 2429 CH04 2.29.2000 2:20 PM Page 109

Listing 4.3: continued

<name>Pineapplesoft Link</name>

<link href=”http://www.pineapplesoft.com/newsletter”/>

<rating>G</rating>

<name>XML.com</name>

<link href=”http://www.xml.com”/>

<rating>G</rating>

<name>Comics.com</name>

<link href=”http://www.comics.com”/>

<rating>G</rating>

<name>Fatbrain.com</name>

<link href=”http://www.fatbrain.com”/>

<rating>G</rating>

<name>ABC News</name>

<link href=”http://www.abcnews.com”/>

<rating>PG</rating>

</references>

This is problematic. Listing 4.3 also is an extension to Listing 4.1 but the
extension creates incompatibilities between Listing 4.2 and Listing 4.3.
This is a very common problem: Two people extend the same document in
incompatible ways.

Things get really out of hand when trying to combine both ratings in a list-
ing. The result would look like Listing 4.4 where the two ratings conflict
with each other.
Listing 4.4: The Combined Listing

<?xml version=”1.0”?>

<references>

<name>Macmillan</name>

<link href=”http://www.mcp.com”/>

<rating>5 stars</rating>

<rating>G</rating>

<name>Pineapplesoft Link</name>

<link href=”http://www.pineapplesoft.com/newsletter”/>

<rating>5 stars</rating>

<rating>G</rating>

<name>XML.com</name>

<link href=”http://www.xml.com”/>

<rating>4 stars</rating>

110 Chapter 4: Namespaces

E X A M P L E

06 2429 CH04 2.29.2000 2:20 PM Page 110

<rating>G</rating>

<name>Comics.com</name>

<link href=”http://www.comics.com”/>

<rating>5 stars</rating>

<rating>G</rating>

<name>Fatbrain.com</name>

<link href=”http://www.fatbrain.com”/>

<rating>4 stars</rating>

<rating>G</rating>

<name>ABC News</name>

<link href=”http://www.abcnews.com”/>

<rating>3 stars</rating>

<rating>PG</rating>

</references>

The problem with Listing 4.4 is that software designed to operate with
Listing 4.3 and filter offensive links would be completely lost. It wouldn’t
know what to do with the “4 stars” rating. The software should simply
ignore quality rating tags but how can it ignore quality rating tags if it can-
not differentiate between the two rating tags?

The solution is obvious: Use different names for the two ratings. Listing 4.5
renames the “quality” element as qa-rating and the “parental” element as
pa-rating.
Listing 4.5: Using Different Names

<?xml version=”1.0”?>

<references>

<name>Macmillan</name>

<link href=”http://www.mcp.com”/>

<qa-rating>5 stars</qa-rating>

<pa-rating>G</pa-rating>

<name>Pineapplesoft Link</name>

<link href=”http://www.pineapplesoft.com/newsletter”/>

<qa-rating>5 stars</qa-rating>

<pa-rating>G</pa-rating>

<name>XML.com</name>

<link href=”http://www.xml.com”/>

<qa-rating>4 stars</qa-rating>

<pa-rating>G</pa-rating>

<name>Comics.com</name>

<link href=”http://www.comics.com”/>

111The Problem Namespaces Solves

E X A M P L E

continues

06 2429 CH04 2.29.2000 2:20 PM Page 111

Listing 4.5: continued

<qa-rating>5 stars</qa-rating>

<pa-rating>G</pa-rating>

<name>Fatbrain.com</name>

<link href=”http://www.fatbrain.com”/>

<qa-rating>4 stars</qa-rating>

<pa-rating>G</pa-rating>

<name>ABC News</name>

<link href=”http://www.abcnews.com”/>

<qa-rating>3 stars</qa-rating>

<pa-rating>PG</pa-rating>

</references>

Namespaces
The problem outlined in the previous example is… the extensible character
of XML. There is no way to prevent somebody from extending a document
in a way that is incompatible with other works. That’s the nature of exten-
sibility. Because anybody can create tags, there is a huge risk of conflicts.

One solution to prevent conflicts would be to establish a global registry of
accepted tags and their associated definition. It would, however, severely
limit XML’s flexibility.

Nobody wants to limit XML’s flexibility. Flexibility was a major goal in the
design of XML. The namespaces proposal addresses this problem with a
more elegant approach: It does not limit extensibility but it introduces
mechanisms to manage it.

Listing 4.6 is equivalent to Listing 4.4 but it uses namespaces to prevent
naming clashes.
Listing 4.6: Using Namespaces

<?xml version=”1.0”?>

<references xmlns:qa=”http://joker.playfield.com/star-rating/1.0”

xmlns:pa=”http://penguin.xmli.com/review/1.0”

xmlns=”http://catwoman.pineapplesoft.com/ref/1.5”>

<name>Macmillan</name>

<link href=”http://www.mcp.com”/>

<qa:rating>5 stars</qa:rating>

<pa:rating>G</pa:rating>

<name>Pineapplesoft Link</name>

<link href=”http://www.pineapplesoft.com/newsletter”/>

<qa:rating>5 stars</qa:rating>

112 Chapter 4: Namespaces

E X A M P L E

06 2429 CH04 2.29.2000 2:20 PM Page 112

<pa:rating>G</pa:rating>

<name>XML.com</name>

<link href=”http://www.xml.com”/>

<qa:rating>4 stars</qa:rating>

<pa:rating>G</pa:rating>

<name>Comics.com</name>

<link href=”http://www.comics.com”/>

<qa:rating>5 stars</qa:rating>

<pa:rating>G</pa:rating>

<name>Fatbrain.com</name>

<link href=”http://www.fatbrain.com”/>

<qa:rating>4 stars</qa:rating>

<pa:rating>G</pa:rating>

<name>ABC News</name>

<link href=”http://www.abcnews.com”/>

<qa:rating>3 stars</qa:rating>

<pa:rating>PG</pa:rating>

</references>

At first sight, Listing 4.6 is similar to Listing 4.5: It declares two different
names for the ratings.

The major difference is the form of the names. In Listing 4.6, a prefix is
added before each element name. A colon separates the name and the
prefix:
<qa:rating>5 stars</qa:rating>

The prefix unambiguously identifies the type of rating in this document.
However, prefixes alone solve nothing because anybody can create prefixes.
Therefore, different people can create incompatible prefixes and we are
back to step one: We have moved the risk of conflicts from element names
to prefixes. To avoid conflicts in prefixes, the prefixes must be declared:
<references xmlns:qa=”http://joker.playfield.com/star-rating/1.0”

xmlns:pa=”http://penguin.xmli.com/review/1.0”

xmlns=”http://catwoman.pineapplesoft.com/ref/1.5”>

The declaration associates a URI with a prefix. This is the crux of the
namespaces proposal because URIs, unlike names, are unique. Namespaces
piggyback on the registration mechanisms established for URIs.

For example, URLs are guaranteed to be unique because they are based on
domain names. Domain names are registered to guarantee uniqueness.

113Namespaces

06 2429 CH04 2.29.2000 2:20 PM Page 113

Namespace declaration is done through attributes with the prefix xmlns fol-
lowed by the prefix. In Listing 4.6, two prefixes are declared: qa and pa.

The attribute xmlns declares the default namespace—that is, the name-
space for those elements that have no attributes.

In summary, XML namespaces is a mechanism to unambiguously identify
who has developed which element. It’s not much but it is an essential ser-
vice.

The Namespace Name
The namespace name is the URI, not the prefix. When an XML application
compares two elements, it uses the URI, not the prefix, to recognize their
namespaces.

Therefore, in Listing 4.7 rff:name and ref:name are considered identical
even though they have a different prefix. Both are in the namespace
http://catwoman.pineapplesoft.com/ref/1.5.
Listing 4.7: One Namespace, Two Prefixes

<?xml version=”1.0” standalone=”yes”?>

<references>

<rff:name

xmlns:rff=”http://catwoman.pineapplesoft.com/ref/1.5”>

Macmillan</rff:name>

<link href=”http://www.mcp.com”/>

<ref:name

xmlns:ref=”http://catwoman.pineapplesoft.com/ref/1.5”>

Pineapplesoft Link</ref:name>

<link href=”http://www.pineapplesoft.com/newsletter”/>

</references>

URIs
The namespace declaration associates a global naming system (the URIs) to
the name of the elements.

The URI is only used to ensure uniqueness of names. It might (but it need
not) point to a description of the name. For example, there might be a docu-
ment at http://penguin.xmli.com/review/1.0 that describes the rating or
there might be nothing.

However, it is important that URIs are unique. The easiest solution is to
create URLs based on your own domain name.

114 Chapter 4: Namespaces

E X A M P L E

06 2429 CH04 2.29.2000 2:20 PM Page 114

C A U T I O N
For namespaces, two URIs are identical only if they are identical character-by-character.
According to this definition, the following two URLs are not identical, even though they
point to the same document:

http://www.mcp.com

http://www.MCP.com

What’s in a Name?
URLs are of the form:
http://www.mcp.com

http://www.pineapplesoft.com/newsletter

ftp://ftp.mcp.com

news://news.psol.com/comp.xml

mailto:bmarchal@pineapplesoft.com

The domain name is just a part of it: “mcp.com” and “pineapplesoft.com” in
the examples.

The domain name is registered with a global authority to ensure there is no
duplicate. Because of the global registration, one cannot do what one wants
with domain names. For example, it is not possible to register names that
are already in use.

Conversely, organizations control the URLs based on their domains. One is
free to create any syntactically correct URL based on one’s own domain
name. For example, Pineapplesoft, my company, owns the
pineapplesoft.com domain and it can create any URL derived from it.

The very last part of the domain name (“.com” in this case) is known as the
Top Level Domain (TLD in short). The TLD identifies the authority that
assigned the domain name.

InterNIC (www.internic.net) is the authority for most so-called generic
TLDs: “.com” (commercial), “.net” (ISPs), “.org” (nonprofit). They are generic
because they are open to organizations (or individuals) worldwide.

There also are country-specific TLDs. Belgian organizations can register in
the “.be” TLD, American ones in the “.us” TLD, Canadian ones in “.ca”,
Japanese ones in “.jp”, and so on. Of course, Belgian, American, Canadian,
and Japanese organizations also can register in the generic TLDs.

URLs provide a good balance of flexibility and control for namespaces. The
control is derived from the domain names, which are guaranteed to be
unique. The flexibility comes because organizations rule in their own
domains.

115URIs

E X A M P L E

06 2429 CH04 2.29.2000 2:20 PM Page 115

Registering a Domain Name
If you are serious about XML development and you currently don’t have a
domain name, you might want to register one so you can identify your ele-
ments.

Indeed, because the URI identifies you as the owner of the namespace, you
cannot use somebody else's domain unless they have agreed to it. It would
not be appropriate, therefore, to use
http://www.mcp.com/myaddressbooks/1.0

as a URI (unless, of course, you work for Macmillan). Domain names are
not really expensive so I would advise you to take one.

The cost varies depending on the TLD. At the time of writing, a “.com”
domain costs $35 per year. Your ISP can register a domain name for you.
For a monthly fee (in addition to the $35 per year), it will host the domain
(provide a Web page).

If you just want to reserve the name for XML namespaces but don’t need
a Web page, you can turn to domain parking. The name is yours but you
don’t host it. Some ISPs offer domain parking for a nominal fee. You also
can turn to Register.com (www.register.com), WorldNIC (www.worldnic.com),
or MyDomain (www.mydomain.com).

After you register a domain name, it’s yours. Just make sure you are listed
as the administrative contact and that you are paying the yearly fee. You
are free to move to another ISP of your choice and still retain your domain.

Some people (not surprisingly those who charge per registration) would
want you to register in all possible TLDs. I doubt it’s a good idea for at
least two reasons:

• It defeats the purpose of having multiple TLDs. More TLDs should
give more people a chance to find a sensible name.

• There are already more than 250 TLDs in operation and more TLDs
will be added in the future. Unless you have very big pockets, it’s a
lost game.

T I P
If you register a domain name specifically for namespaces, opt for a short name such
as an abbreviation. Over time, it will save you a lot of typing!

For example, in addition to pineapplesoft.com, Pineapplesoft also uses the domain
psol.com (short for Pineapplesoft Object Library—it was originally registered for Java
libraries).

116 Chapter 4: Namespaces

06 2429 CH04 2.29.2000 2:20 PM Page 116

Creating a Sensible URL
There are no rules on how to build URLs for namespaces. As long as it has
the right format (as explained before), it works. Experience shows that
URLs works best if they follow the following rules:

• Namespaces are identified by Web addresses. You might want to post
a description of the namespace at a later point.

• The URL is reasonably short to save typing.

• The URL includes a readable description of the namespace.

• The URL includes a version number so you can update the namespace
by changing the version number.

Some examples include
http://www.psol.com/xml/address/1.0

http://www.w3.org/XSL/Transform/1.0

http://www.w3.org/TR/REC-html40

C A U T I O N
Most importantly, write the URL down and make sure nobody else in your organization
uses it. Remember the goal of the exercise is to avoid duplicates.

T I P
Large organizations should use subdomains to help manage unique URLs. For
example, the namespace for finance department would be in the finance.
pineapplesoft.com subdomain, whereas the sales department would use
sales.pineapplesoft.com.

In this book, I pick URLs on the catwoman.pineapplesoft.com server. If you
are curious, catwoman is Pineapplesoft’s Intranet server.

URNs
Currently, most URIs are URLs. URLs are addresses. They point to a file
on a machine, whereas an URN is a generic name for a resource. It means
that if the document moves, the address is invalid. This is the dreadful “404
File not found” error message.

The IETF (Internet Engineering Task Force) is working on other forms of
URIs, more specifically URN (Uniform Resource Name).

URNs are not addresses. They are independent of the location of the docu-
ment. This should eliminate the “404” errors.

ISBN numbers (the number at the back of the book, on top of the bar
code) are good candidates for URNs. An ISBN number identifies a book,

117URIs

E X A M P L E

06 2429 CH04 2.29.2000 2:20 PM Page 117

irrespective of where the book is currently located. You can use the ISBN
number to order the book from a bookstore or to borrow it from a library.

The URN for this book is
urn:ISBN:0-7897-2242-9

Another approach is to use PURLs (Permanent URLs). Unlike regular
URLs, PURLs are registered to avoid “404” errors. The registration process
is the key: If the document moves, it suffices to update the Registry. The
PURL remains unchanged. You can find more information on PURLs (and
create your first PURL) at www.purl.org.

Scoping
The namespace is valid for the element where it is declared and all the ele-
ments within its content, as illustrated in Listing 4.8.
Listing 4.8: Scoping of Namespaces

<?xml version=”1.0”?>

<rff:references

xmlns:rff=”http://catwoman.pineapplesoft.com/ref/1.5”>

<rff:name>Macmillan</rff:name>

<rff:link href=”http://www.mcp.com”/>

<pa:rating

xmlns:pa=”http://pinguin.xmli.com/review/1.0”>G</pa:rating>

<rff:name>Pineapplesoft Link</rff:name>

<rff:link href=”http://www.pineapplesoft.com/newsletter”/>

<qa:rating

xmlns:qa=”http://joker.playfield.com/star-rating/1.0”>

5 stars</qa:rating>

</rff:references>

Again, there are three namespaces declared in Listing 4.7. rff is declared
on the top-level element and is therefore valid for all the elements. pa is
declared only for the first rating element and it is valid for that element
only. qa is declared for the second rating element.

As Listing 4.9 illustrates, the namespace also can be associated with
specific attributes. In Listing 4.9, a new attribute is added to the name
element to convey the subscription fee.
Listing 4.9: Using Namespaces for Attributes

<?xml version=”1.0”?>

<references

xmlns=”http://catwoman.pineapplesoft.com/ref/1.5”

118 Chapter 4: Namespaces

E X A M P L E

E X A M P L E

E X A M P L E

06 2429 CH04 2.29.2000 2:20 PM Page 118

xmlns:sub=”http://penguin.xmli.com/subscription/1.0”>

<name sub:subscription=”$0.0”>Pineapplesoft Link</name>

<link href=”http://www.pineapplesoft.com/newsletter”/>

</references>

Namespaces and DTD
If the document is a valid document, that is if it has a DTD, the prefix and
the attributes for namespace declaration must be declared in the DTD.
Listing 4.10 illustrates how it works.
Listing 4.10: Declaring the Namespace Prefix in the DTD

<?xml version=”1.0” standalone=”yes”?>

<!DOCTYPE rff:references [

<!ELEMENT rff:references (rff:name,rff:link)+>

<!ATTLIST rff:references xmlns:rff CDATA #REQUIRED>

<!ELEMENT rff:name (#PCDATA)>

<!ELEMENT rff:link EMPTY>

<!ATTLIST rff:link href CDATA #REQUIRED>

]>

<rff:references xmlns:rff=”http://catwoman.pineapplesoft.com/ref/1.5”>

<rff:name>Macmillan</rff:name>

<rff:link href=”http://www.mcp.com”/>

<rff:name>Pineapplesoft Link</rff:name>

<rff:link href=”http://www.pineapplesoft.com/newsletter”/>

<rff:name>XML.com</rff:name>

<rff:link href=”http://www.xml.com”/>

<rff:name>Comics.com</rff:name>

<rff:link href=”http://www.comics.com”/>

<rff:name>Fatbrain.com</rff:name>

<rff:link href=”http://www.fatbrain.com”/>

<rff:name>ABC News</rff:name>

<rff:link href=”http://www.abcnews.com”/>

</rff:references>

For valid documents, it is possible to declare the namespace as a fixed
attribute in the DTD as shown in Listing 4.11.
Listing 4.11: Declaring the Namespace in the DTD

<?xml version=”1.0” standalone=”yes”?>

<!DOCTYPE rff:references [

119Namespaces and DTD

E X A M P L E

E X A M P L E

continues

06 2429 CH04 2.29.2000 2:20 PM Page 119

Listing 4.11: continued

<!ELEMENT rff:references (rff:name,rff:link)+>

<!ATTLIST rff:references xmlns:rff CDATA #FIXED

“http://catwoman.pineapplesoft.com/ref/1.5”>

<!ELEMENT rff:name (#PCDATA)>

<!ELEMENT rff:link EMPTY>

<!ATTLIST rff:link href CDATA #REQUIRED>

]>

<rff:references>

<rff:name>Macmillan</rff:name>

<rff:link href=”http://www.mcp.com”/>

<rff:name>Pineapplesoft Link</rff:name>

<rff:link href=”http://www.pineapplesoft.com/newsletter”/>

<rff:name>XML.com</rff:name>

<rff:link href=”http://www.xml.com”/>

<rff:name>Comics.com</rff:name>

<rff:link href=”http://www.comics.com”/>

<rff:name>Fatbrain.com</rff:name>

<rff:link href=”http://www.fatbrain.com”/>

<rff:name>ABC News</rff:name>

<rff:link href=”http://www.abcnews.com”/>

</rff:references>

C A U T I O N
It is dangerous to declare namespaces using this mechanism in an external DTD
because a nonvalidating parser might skip external DTDs.

Using this mechanism, if the parser skips the external DTD, it also skips the name-
space declaration. The rule of thumb is always declare the namespace in the docu-
ment, either in the internal subset of the DTD or in the document itself.

✔ See the discussion on standalone documents in Chapter 3, “XML Schemas,” page 69.

N O T E
DTDs are inherited from SGML and therefore are not namespace-aware. This is one of
the arguments to replace DTDs with new XML schemas, as explained in Chapter 3,
“XML Schemas.”

Applications of Namespaces
Namespaces are a small extension to XML that associates an owner to spe-
cific XML elements. It’s not much but it has led to new ways of creating
XML documents.

120 Chapter 4: Namespaces

06 2429 CH04 2.29.2000 2:20 PM Page 120

Initially, XML documents were developed in isolation. One would develop a
DTD for a specific application—that is a magazine, an order, or a channel—
as we saw in Chapter 2, “The XML Syntax.” The elements defined in the
DTD would be specific to that application. There is little reuse of elements
except, maybe, by cutting and pasting old DTDs into new ones.

Thanks to namespaces, it is possible to develop reusable elements—that is,
elements that can be reused in multiple documents. This is a new approach
for document development.

Increasingly, the W3C and other groups work on such reusable elements.
Two examples are XML style sheets and digital signatures for XML.

XML Style Sheet
Listing 4.12 is an XML style sheet. As you can see, it combines elements
from the style sheet language itself (in the namespace
http://www.w3.org/1999/XSL/Transform) and elements from HTML (in the
namespace http://www.w3.org/TR/REC-html40).
Listing 4.12: Using Namespaces with Style Sheets

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

xmlns=”http://www.w3.org/TR/REC-html40”>

<xsl:output method=”html”/>

<xsl:template match=”/”>

<HTML>

<HEAD>

<TITLE>Article</TITLE>

</HEAD>

<BODY>

<xsl:apply-templates/>

</BODY>

</HTML>

</xsl:template>

<xsl:template match=”title”>

<P><xsl:apply-templates/></P>

</xsl:template>

121Applications of Namespaces

E X A M P L E

continues

06 2429 CH04 2.29.2000 2:20 PM Page 121

Listing 4.12: continued

<xsl:template match=”p”>

<P><xsl:apply-templates/></P>

</xsl:template>

</xsl:stylesheet>

✔ We will cover style sheets in more detail in Chapter 5, “XSL Transformation,” page 125

and Chapter 6, “XSL Formatting Objects and Cascading Style Sheet,” page 161.

Links
The XLink recommendation provides a standard set of elements to link
between documents (links are similar, but more powerful, to HTML links).
The elements and attributes defined in XLink can be included in any XML
document. To differentiate XLink elements from the rest of the document,
the recommendation uses namespaces, as illustrated by Listing 4.13.
Listing 4.13: Using Namespaces with XLink

<?xml version=”1.0”?>

<info>

<para>XLink links XML documents. It supports simple

links, which are very similar to HTML links, but it

also supports more advanced links.</para>

<para>For more information on XLink, you can visit

<xlink:simple xmlns:xlink=”http://www.w3.org/XML/XLink/0.9”

href=”http://www.w3.org/TR/xlink” role=”recommendation”

title=”XML Linking Language (XLink)” show=”replace”

actuate=”user”>the W3C site</xlink:simple></para>

</info>

What’s Next
This chapter concludes the background introduction to XML. The next
chapters will teach you how to use XML in your environment. We will start
by looking at how XML can simplify Web site development.

122 Chapter 4: Namespaces

06 2429 CH04 2.29.2000 2:20 PM Page 122

06 2429 CH04 2.29.2000 2:20 PM Page 123

07 2429 CH05 2.29.2000 2:21 PM Page 124

5

XSL Transformation
In the last three chapters, you learned the basics of XML. Specifically, you
learned the XML syntax, how to read and write documents, how to organize
and structure XML documents with schemas, and how to extend and reuse
schemas through namespaces.

This chapter is more practical. It shows you how to manipulate XML docu-
ments. In this and the following chapter, we will look at styling—how to
display a document with a browser or an editor.

In this chapter, you will learn how to use XSL, the XML Stylesheet
Language, to

• convert XML documents in XML (with a different DTD), HTML, and
other formats

• publish a large set of documents

• reorganize XML documents to create table of contents or other infor-
mation

• extract information from XML documents

07 2429 CH05 2.29.2000 2:21 PM Page 125

Why Styling?
XML concentrates on the structure of the information and not its appear-
ance. However, to view XML documents we need to format or style them.
Obviously, the styling instructions are directly related to and derived from
the structure of the document.

In practice, styling instructions are organized in style sheets; to view a doc-
ument, apply the appropriate style sheet to it.

The W3C has published two recommendations for style sheets: CSS, short
for Cascading Style Sheet, and XSL, short for XML Stylesheet Language.

CSS
CSS was originally developed for HTML and browsers that support XML
also largely support it. A CSS is a set of rules that tells the browser which
font, style, and margin to use to display the text, as shown in the following
example:
section.title

{

font-family: Palatino, Garamond, “Times New Roman”, serif;

font-size: 10pt;

margin: 5px;

display: block;

font-style: italic

}

✔ CSS is the topic of Chapter 6, “XSL Formatting and Cascading Style Sheet,” page 161.

XSL
XSL is more ambitious than CSS because it supports transforming the doc-
ument before display. XSL would typically be used for advanced styling
such as creating a table of contents shown in the following example:
<P>Table of Contents</P>

<xsl:for-each select=”article/section/title”>

<A><xsl:value-of select=”.”/>

</xsl:for-each>

126 Chapter 5: XSL Transformation

E X A M P L E

E X A M P L E

07 2429 CH05 2.29.2000 2:21 PM Page 126

XSL
XSL, the W3C recommendation, is organized into two parts: XSLT, short for
XSL Transformation, and XSLFO, short for XSL Formatting Objects. This
chapter concentrates on XSLT. The next chapter discusses both CSS and
XSLFO. As we will see, CSS and XSLFO are very similar in scope.

N O T E
The similarity between CSS and XSLFO has led to some controversy. Given they are so
similar, aren’t they redundant? If CSS is already in use, why bother with the more
complex XSL?

It turns out that we need both because XSL is more powerful than CSS. In particular,
there is no equivalent for XSLT, the transformation part of XSL, in CSS.

In practice, most implementations of XSL today support only XSLT. For the time being,
the consensus in the industry seems to be that XSLT is useful but CSS is preferred to
XSLFO.

C A U T I O N
At the time of this writing, the XSL recommendation was not formally adopted. The con-
tent of this chapter is based on a Working Draft dated 21 April 1999 (www.w3.org/TR/
1999/WD-xslt-19990421.html). It has been updated as changes to XSL were released.

The draft will be revised and enhanced. A situation that is particularly frustrating for an
author: It is likely that, by the time you read this book, some changes will be introduced
that are incompatible with the examples published in the chapter. Therefore, I invite you
to check the Macmillan Web site at www.mcp.com where I will post updates to this
chapter.

LotusXSL
To run the examples in this chapter, you need an XSL processor. An XSL
processor is simply a software component that implements the XSL
standard.

There are several XSL processors on the market including those from
Microsoft (www.microsoft.com) and Lotus (www.alphaworks.ibm.com). James
Clark, the editor of the XSLT standard, also has released an XSL processor
(www.jclarck.com).

In this chapter, we’ll use LotusXSL (version 0.19.1), which is available at no
charge from www.alphaworks.ibm.com. Like most XML tools, LotusXSL is
written in Java. Although you don’t have to program in Java to use it,
you must install either a Java Runtime Environment (JRE) or a Java
Development Kit (JDK) on your computer. You can download a Java envi-
ronment from Sun at java.sun.com.

127XSL

07 2429 CH05 2.29.2000 2:21 PM Page 127

✔ If you need help installing the Java Development Kit, turn to Appendix A, “Crash

Course on Java,” page 457.

Concepts of XSLT
XSLT is a language to specify transformation of XML documents. It takes
an XML document and transforms it into another XML document, as illus-
trated by Figure 5.1.

128 Chapter 5: XSL Transformation

Figure 5.1: Using XSL to transform an XML document

XSLT is not limited to styling activities. Many applications require trans-
forming documents. XSLT can be used to

• add elements specifically for viewing, such as add the logo or the
address of the sender to an XML invoice

• create new content from an existing one, such as create the table of
contents

• present information with the right level of details for the reader,
such as using a style sheet to present high-level information to a
managerial person while using another style sheet to present more
detailed technical information to the rest of the staff

• convert between different DTDs or different versions of a DTD, such
as convert a company specific DTD to an industry standard

• transform XML documents into HTML for backward compatibility
with existing browsers

The last case is very common. The XSLT recommendation considers HTML
conversion as a special case of XML transformation. This also is one of the
solutions supported by Microsoft Internet Explorer 4.0 and 5.0.

Basic XSLT
I publish a monthly e-zine, Pineapplesoft Link. Every month, I email the
e-zine to subscribers and I post a copy on my Web site. That’s two formats
to support: text and HTML.

07 2429 CH05 2.29.2000 2:21 PM Page 128

XML and XSL can help because it enables me to write the document in one
format (XML) and automatically create distribution copies in text and
HTML.

Furthermore, because styling is applied automatically, it is easy to change
the layout of the Web site: Just change the style sheet. As Web fashion
keeps changing, this is a major advantage.

Viewing XML in a Browser
Listing 5.1 is an abbreviated version of the January 1999 article that dis-
cussed XML style sheets. The structure of the document is in Figure 5.2
(essentially an article is a set of sections). Figures 5.3 and 5.4 view the doc-
ument in Internet Explorer 5.0.
Listing 5.1: An Article in XML

<?xml version=”1.0”?>

<article fname=”19990101_xsl”>

<title>XML Style Sheets</title>

<date>January 1999</date>

<copyright>1999, Benoît Marchal</copyright>

<abstract>Style sheets add flexibility to document viewing.</abstract>

<keywords>XML, XSL, style sheet, publishing, web</keywords>

<section>

<p>Send comments and suggestions to <url protocol=”mailto”>bmarchal@
➥pineapplesoft.com</url>.</p>

</section>

<section>

<title>Styling</title>

<p>Style sheets are inherited from SGML, an XML ancestor. Style sheets
➥originated in publishing and document management applications. XSL is XML’s
➥standard style sheet, see <url>http://www.w3.org/Style</url>.</p>

</section>

<section>

<title>How XSL Works</title>

<p>An XSL style sheet is a set of rules where each rule specifies how to format
➥certain elements in the document. To continue the example from the previous
➥section, the style sheets have rules for title, paragraphs and keywords.</p>

<p>With XSL, these rules are powerful enough not only to format the document
➥but also to reorganize it, e.g. by moving the title to the front page or
➥extracting the list of keywords. This can lead to exciting applications of XSL
➥outside the realm of traditional publishing. For example, XSL can be used to
➥convert documents between the company-specific markup and a standard one.</p>

</section>

<section>

<title>The Added Flexibility of Style Sheets</title>

129Basic XSLT

E X A M P L E

continues

07 2429 CH05 2.29.2000 2:21 PM Page 129

Listing 5.1: continued

<p>Style sheets are separated from documents. Therefore one document can have
➥more than one style sheet and, conversely, one style sheet can be shared
➥amongst several documents.</p>

<p>This means that a document can be rendered differently depending on the media
➥or the audience. For example, a “managerial” style sheet may present a summary
➥view of a document that highlights key elements but a “clerical” style sheet
➥may display more detailed information.</p>

</section>

</article>

130 Chapter 5: XSL Transformation

Figure 5.2: The structure of the article

Figure 5.3: The XML document in Internet Explorer 5.0

Figure 5.4: The same XML document with collapsed elements

Internet Explorer 5.0 applies default formatting to XML documents. It is
possible to override the default formatting with style sheets.

As you can see, by default, text is in bold. To make the structure more
visible, each element is collapsible—clicking the minus or plus symbol next
to an element will extend or collapse it. Figure 5.4 is the same document
with some elements collapsed.

✔ Chapter 6, “XSL Formatting Objects and Cascading Style Sheet,” discusses how browsers

other than Internet Explorer 5.0 render XML.

07 2429 CH05 2.29.2000 2:21 PM Page 130

A Simple Style Sheet
The first goal is to convert the XML document into HTML. The style sheet
in Listing 5.2 is an example of how to do it.
Listing 5.2: XSLT Style Sheet to Convert the Article in HTML

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”

xmlns=”http://www.w3.org/TR/REC-html40”>

<xsl:output method=”html”/>

<xsl:template match=”/”>

<HTML>

<HEAD>

<TITLE>Pineapplesoft Link</TITLE>

</HEAD>

<BODY>

<xsl:apply-templates/>

</BODY>

</HTML>

</xsl:template>

<xsl:template match=”section/title”>

<P><I><xsl:apply-templates/></I></P>

</xsl:template>

<xsl:template match=”article/title”>

<P><xsl:apply-templates/></P>

</xsl:template>

<xsl:template match=”url”>

<xsl:attribute name=”HREF”>

<xsl:apply-templates/>

</xsl:attribute>

<xsl:apply-templates/>

</xsl:template>

131Basic XSLT

O U T P U T

continues

07 2429 CH05 2.29.2000 2:21 PM Page 131

Listing 5.2: continued

<xsl:template match=”url[@protocol=’mailto’]”>

<A>

<xsl:attribute name=”HREF”>mailto:<xsl:apply-templates/>

</xsl:attribute>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match=”p”>

<P><xsl:apply-templates/></P>

</xsl:template>

<xsl:template match=”abstract | date | keywords | copyright”/>

</xsl:stylesheet>

The style sheet is applied with LotusXSL, as explained previously. From
the DOS prompt, change to the document directory and type the following
command:
java –classpath
➥c:\lotusxsl\xerces.jar;c:\lotusxsl\lotusxsl.jar
➥com.lotus.xsl.Process
➥-in 19990101_xsl.xml
➥-xsl simple.xsl -out 19990101_xsl.html

C A U T I O N
The LotusXSL processor won’t work unless you have installed a Java runtime.

If there is an error message similar to “Exception in thread “main” java.lang.
NoClassDefFoundError,” either the classpath is incorrect (you might have to adapt it)
or you typed an incorrect class name for LotusXSL (com.lotus.xsl.xml4j.
ProcessXSL).

The parameters are self-explanatory: in is the document file (XML file), out
is the result file (HTML file), xsl is the XSL file. The HTML parameter
forces the processor to respect the HTML syntax (for example,
 instead
of
).

If everything goes well, there is a new HTML file, 19990101_xsl.html, in
the document directory. Listing 5.3 is 19990101_xsl.html. Figure 5.5 views
it in a browser.
Listing 5.3: The HTML Document Generated by the XSL Style Sheet

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>

<HTML><HEAD><TITLE>Pineapplesoft Link</TITLE></HEAD><BODY>

132 Chapter 5: XSL Transformation

E X A M P L E continues

07 2429 CH05 2.29.2000 2:21 PM Page 132

Listing 5.3: continued

<P>XML Style Sheets</P>

<P>Send comments and suggestions to bmarchal@pineapplesoft.com.</P>

<P><I>Styling</I></P>

<P>Style sheets are inherited from SGML, an XML ancestor. Style sheets
➥originated in publishing and document management applications. XSL is XML’s
➥standard style sheet, see <A target=”_blank”
➥href=”http://www.w3.org/Style”>http://www.w3.org/Style.</P><P><I>How XSL
➥Works</I></P>

<P>An XSL style sheet is a set of rules where each rule specifies how to format
➥certain elements in the document. To continue the example from the previous
➥section, the style sheets have rules for title, paragraphs and keywords.</P>

<P>With XSL, these rules are powerful enough not only to format the document
➥but also to reorganize it, e.g. by moving the title to the front page or
➥extracting the list of keywords. This can lead to exciting applications of XSL
➥outside the realm of traditional publishing. For example, XSL can be used to
➥convert documents between the company-specific markup and a standard one.</P>

<P><I>The Added Flexibility of Style Sheets</I></P>

<P>Style sheets are separated from documents. Therefore one document can have
➥more than one style sheet and, conversely, one style sheet can be shared
➥amongst several documents.</P>

<P>This means that a document can be rendered differently depending on the media
➥or the audience. For example, a “managerial” style sheet may present a summary
➥view of a document that highlights key elements but a “clerical” style sheet
➥may display more detailed information.</P>

</BODY></HTML>

133Basic XSLT

O U T P U T

Figure 5.5: Viewing the result with Netscape Communicator

07 2429 CH05 2.29.2000 2:21 PM Page 133

N O T E
The latest draft of XSLT available at the time of this writing has introduced a new ele-
ment, xsl:output, that plays a role similar to the html command-line parameter of
LotusXSL.

For example, the following element specifies that the transformation is from XML to
HTML:

<xsl:output method=”html”/>

The following sections examine the style sheet in more detail.

Stylesheet Element
The style sheet is a well-formed XML document (XSL designers thought
that XML was the best syntax for a style sheet). It describes the tree of the
source document, the tree of the resulting document, and how to transform
one into the other. The top-level element is style sheet as shown in the
example:
<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”

xmlns=”http://www.w3.org/TR/REC-html40”>

<xsl:output method=”html”/>

Because the style sheet contains elements from different documents, name-
spaces are used to organize these elements:

• The xsl namespace is used for the XSL vocabulary. Its URI must be
http://www.w3.org/1999/XSL/Transform/1.0.

• The resulting document has another namespace. In this case, the
default namespace is attached to HTML 4.0.

Template Elements
The bulk of the style sheet is a list of templates. The following example
transforms the title of a section in an HTML paragraph with the text in
italic:
<xsl:template match=”section/title”>

<P><I><xsl:apply-templates/></I></P>

</xsl:template>

<P><I>Styling</I></P>

A template has two parts:

• The match parameter is a path to the element in the source tree to
which the template applies.

• The content of the template lists the elements to insert in the
resulting tree.

134 Chapter 5: XSL Transformation

E X A M P L E

E X A M P L E

O U T P U T

07 2429 CH05 2.29.2000 2:21 PM Page 134

Paths
The syntax for XML paths is similar to file paths. XML paths start from
the root of the document and list elements along the way. Elements are
separated by the “/” character.

The root of the document is “/”. The root is a node that sits before the top-
level element. It represents the document as a whole.

The following four paths match respectively the title of the article
(<title>XML Style Sheets</title>), the keywords of the article, the top-
most article element, and all sections in the article. Note that the last path
matches several elements in the source tree.
/article/title

/article/keywords

/article

/article/section

T I P
Note that “/” points to the immediate children of a node. Therefore, /article/title
selects the main title of the article (XML Style Sheets), not all the titles below the arti-
cle element. It won’t select the section titles.

To select all the descendants from a node, use the “//” sequence. /article//title
selects all the titles in the article. It selects the main title and the section titles.

In the style sheet, most paths don’t start at the root. XSL has the notion of
current element. Paths in the match attribute can be relative to the current
element.

Again, this is similar to the file system. Double-clicking the accessories
folder in the c:\program files folder moves to c:\program files\
accessories folder, not to c:\accessories.

If the current element is an article, then title matches /article/title
but if the current article is a section, title matches one of the /article/
section/titles.

To match any element, use the wildcard character “*”. The path /article/*
matches any direct descendant from article, such as title, keywords, and
so on.

It is possible to combine paths in a match with the “|” character, such as
title | p matches title or p elements.

135Basic XSLT

E X A M P L E

07 2429 CH05 2.29.2000 2:21 PM Page 135

Matching on Attributes
Paths can match on attributes, too. The following template applies only to
“mailto” URLs:
<xsl:template match=”url[@protocol=’mailto’]”>

<A>

<xsl:attribute name=”HREF”>mailto:<xsl:apply-templates/>

</xsl:attribute>

<xsl:apply-templates/>

</xsl:template>

➥bmarchal@pineapplesoft.com

It matches <url protocol=”mailto”>bmarchal@pineapplesoft.com</url>
that has a protocol attribute with the value “mailto” but it does not match
<url>http://www.w3.org/Style</url>. The more generic url path would
match the later element.

url[@protocol] matches URL elements that have a protocol attribute,
no matter what its value is. It would match the <url
protocol=”http”>www.w3.org/Style</url> but it would not match
<url>http://www.w3.org/Style</url>.

Matching Text and Functions
Functions restrict paths to specific elements. The following two paths are
identical and select the text of the title of the second section in the docu-
ment (Styling).
/article/section[position()=2]/title/text()

/article/section[2]/title/text()

Most functions can also take a path as an argument. For example,
count(//title) returns the number of title elements in the document.
Table 5.1 lists some of the most common functions.

Table 5.1: Most common XSL functions

XSL Function Description
position() returns the position of the current node in the node set

text() returns the text (the content) of an element

136 Chapter 5: XSL Transformation

E X A M P L E

O U T P U T

O U T P U T

07 2429 CH05 2.29.2000 2:21 PM Page 136

last() returns the position of the last node in the current node set

count() returns the number of nodes in the current node set

not() negates the argument

contains() returns true if the first argument contains the second argument

starts-with() returns true if the first argument starts with the second argu-
ment

New functions are declared in JavaScript, Java, C++, and so on, with the
xsl:functions element.
<xsl:template match=”/”>

<xsl:value-of select=”psol:today()”/>

</xsl:template>

<xsl:functions ns=”psol” type=”text/javascript”>

function today() {

return Date().toString()

}

</xsl:functions>

C A U T I O N
Be aware that this element was still very much in flux in the draft we used to prepare
this chapter.

Deeper in the Tree
After loading the style sheet, the XSL processor loads the source document.
Next, it walks through the source document from root to leaf nodes. At each
step it attempts to match the current node against a template.

If there is a match, the processor generates the nodes in the resulting tree.
When it encounters xsl:apply-templates, it moves to the children of the
current node and repeats the process; that is, it attempts to match them
against a template.

In other words, xsl:apply-templates is a recursive call to the style sheet.
A recursive approach is natural to manipulate trees. You might have recog-
nized a deep-first search algorithm. Figure 5.6 illustrates how it works.

137Basic XSLT

XSL Function Description

E X A M P L E

07 2429 CH05 2.29.2000 2:21 PM Page 137

Figure 5.6: Walking down the input tree

Following the Processor
Let’s follow the XSL processor for the first few templates in the style sheet.
After loading the style sheet and the source document the processor posi-
tions itself at the root of the source document. It looks for a template that
matches the root and it immediately finds
<xsl:template match=”/”>

<HTML>

<HEAD>

<TITLE>Pineapplesoft Link</TITLE>

</HEAD>

<BODY>

<xsl:apply-templates/>

</BODY>

</HTML>

</xsl:template>

Because the root sits before the top-level element, it is ideal to create the
top-level element of the resulting tree. For HTML, it is the HTML element
with HEAD and BODY elements.

When it encounters xsl:appy-templates, the processor moves to the first
child of the current node. The first child of the root is the top-level element
or the article element.

The style sheet defines no templates for the article but can match template
against a built-in template. Built-in templates are not defined in the style
sheet. They are predefined by the processor.

138 Chapter 5: XSL Transformation

07 2429 CH05 2.29.2000 2:21 PM Page 138

<xsl:template match=”* | /”>

<xsl:apply-templates/>

</xsl:template>

N O T E
The built-in template does not modify the resulting tree (it does not create elements)
but it recursively calls the current element’s children.

Without the default template, there would be no rules to trigger the recursive matching
process and the processor would stop.

It is possible to override the built-in template, for example, to stop processing for ele-
ments not explicitly defined elsewhere:

<xsl:template match=”* | /”/>

The built-in template forces the processor to load the first children of
article, that is, the title element. The following template matches
<xsl:template match=”article/title”>

<P><xsl:apply-templates/></P>

</xsl:template>

Note that the processor matches on a relative path because the current
node is article. It creates a paragraph in the HTML document. xsl:apply-
templates loads title’s children.

The first and only child of title is a text node. The style sheet has no rule to
match text but there is another built-in template that copies the text in the
resulting tree.
<xsl:template match=”text()”>

<xsl:value-of select=”.”/>

</xsl:template>

The title’s text has no children so the processor cannot go to the next level.
It backtracks to the article element and moves to the next child: the date
element. This element matches the last template.
<xsl:template match=”abstract | date | keywords | copyright”/>

This template generates no output in the resulting tree and stops process-
ing for the current element.

The processor backtracks again to article and processes its other children:
copyright, abstract, keywords, and section. Copyright, abstract, and key-
words match the same rule as abstract and generate no output in the
resulting tree.

139Basic XSLT

07 2429 CH05 2.29.2000 2:21 PM Page 139

The section element, however, matches the default template and the proces-
sor moves to its children, title, and p elements. The processor continues to
match rules with nodes until it has exhausted all the nodes in the original
document.

Creating Nodes in the Resulting Tree
Sometimes it is useful to compute the value or the name of new nodes. The
following template creates an HTML anchor element that points to the
URL. The anchor has two attributes. The first one, TARGET, is specified
directly in the template. However, the processor computes the second
attribute, HREF, when it applies the rule.
<xsl:template match=”url”>

<xsl:attribute name=”HREF”>

<xsl:apply-templates/>

</xsl:attribute>

<xsl:apply-templates/>

</xsl:template>

➥http://www.w3.org/Style

Table 5.2 lists other XSL elements that compute nodes in the resulting tree.

Table 5.2: XSL elements to create new objects

XSL Element Description
xsl:element creates element with a computed name

xsl:attribute creates attribute with a computed value

xsl:attribute-set conveniently combines several xsl:attributes

xsl:text creates a text node

xsl:processing-instruction creates a processing instruction

xsl:comment creates a comment

xsl:copy copies the current node

xsl:value-of computes text by extracting from the source tree or
inserting a variable

xsl:if instantiates its content if the expression is true

xsl:choose selects elements to instantiate among possible
alternatives

xsl:number creates formatted number

140 Chapter 5: XSL Transformation

E X A M P L E

O U T P U T

07 2429 CH05 2.29.2000 2:21 PM Page 140

PRIORITY

There are rules to prioritize templates. Without going into too many details,
templates with more specific paths take precedence over less specific tem-
plates. In the following example, the first template has a higher priority
than the second template because it matches an element with a specific
attribute.
<xsl:template match=”url[@protocol=’mailto’]”>

<A>

<xsl:attribute name=”HREF”>mailto:<xsl:apply-templates/>

</xsl:attribute>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match=”url”>

<xsl:attribute name=”HREF”>

<xsl:apply-templates/>

</xsl:attribute>

<xsl:apply-templates/>

</xsl:template>

If there is a conflict between two templates of equivalent priority, then the
XSL processor can either report an error or choose the template that
appears last in the style sheet.

Supporting a Different Medium
Recall that my original problem is to provide both an HTML and a text ver-
sion of the document. We have seen how to automatically create an HTML
version document, now it’s time to look at the text version.

Text Conversion

C A U T I O N
Text conversion stretches the concept of XML to XML conversion; therefore, you have to
be careful in writing the style sheet.

Listing 5.4 is the text style sheet. It is very similar to the previous style
sheet except that it inserts only text nodes, no XML elements, in the
resulting tree.

141Supporting a Different Medium

E X A M P L E

E X A M P L E

07 2429 CH05 2.29.2000 2:21 PM Page 141

Listing 5.4: A Style Sheet to Produce a Text File

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”>

<xsl:output method=”text”/>

<xsl:template match=”article/title”>

<xsl:text>=== </xsl:text>

<xsl:apply-templates/>

<xsl:text> ===</xsl:text>

</xsl:template>

<xsl:template match=”section/title”>

<xsl:text>*** </xsl:text>

<xsl:apply-templates/>

<xsl:text> ***</xsl:text>

</xsl:template>

<xsl:template match=”url”>

<xsl:text>[</xsl:text>

<xsl:apply-templates/>

<xsl:text>]</xsl:text>

</xsl:template>

<xsl:template match=”p”>

<xsl:text>

</xsl:text>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match=”abstract | date | keywords | copyright”/>

</xsl:stylesheet>

Logically enough, the xsl:stylesheet element does not declare a name-
space for the resulting tree. This style sheet also makes heavy use of text
nodes.

142 Chapter 5: XSL Transformation

07 2429 CH05 2.29.2000 2:21 PM Page 142

<xsl:template match=”section/title”>

<xsl:text>*** </xsl:text>

<xsl:apply-templates/>

<xsl:text> ***</xsl:text>

</xsl:template>

The following command line creates the text in Listing 5.5.
java –classpath

➥c:\lotusxsl\xerces.jar;c:\lotusxs\lotusxsl.jar

➥com.lotus.xsl.Process

➥-in 19990101_xsl.xml

➥-xsl email.xsl -out 19990101_xsl.txt

Listing 5.5: The Resulting Text Document

=== XML Style Sheets ===

Send comments and suggestions to <bmarchal@pineapplesoft.com>.

*** Styling ***

Style sheets are inherited from SGML, an XML ancestor. Style sheets originated
➥in publishing and document management applications. XSL is XML’s standard style
➥sheet, see [http://www.w3.org/Style].

*** How XSL Works ***

An XSL style sheet is a set of rules where each rule specifies how to format
➥certain elements in the document. To continue the example from the previous
➥section, the style sheets have rules for title, paragraphs and keywords.

With XSL, these rules are powerful enough not only to format the document
➥but also to reorganize it, e.g. by moving the title to the front page or
➥extracting the list of keywords. This can lead to exciting applications of XSL
➥outside the realm of traditional publishing. For example, XSL can be used to
➥convert documents between the company-specific markup and a standard one.

*** The Added Flexibility of Style Sheets ***

Style sheets are separated from documents. Therefore one document can have more
➥than one style sheet and, conversely, one style sheet can be shared amongst
➥several documents.

This means that a document can be rendered differently depending on the media or
➥the audience. For example, a “managerial” style sheet may present a summary
➥view of a document that highlights key elements but a “clerical” style sheet
➥may display more detailed information.

143Supporting a Different Medium

O U T P U T

07 2429 CH05 2.29.2000 2:21 PM Page 143

Customized Views
Currently, most people access the Web through a browser on a Windows
PC. Some people use Macintoshes, others use UNIX workstations. This will
change in the future as more people turn to specialized devices. Already
WebTV has achieved some success with a browser in a TV set.

Mobile phones and PDAs, such as the popular PalmPilot, will be increas-
ingly used for Web browsing. Ever tried surfing on a PalmPilot? It works
surprisingly well but, on the small screen, many Web sites are not readable
enough.

One solution to address the specific needs of smaller devices might be to
use XHTML, an XML simplified version of HTML. XHTML is based on
HTML but it has an XML syntax (as opposed to an SGML syntax). It is also
designed to be modular as it is expected smaller devices will implement
only a subset of the recommendation.

According to the W3C, these new platforms might account for up to 75% of
Web viewing by the year 2002. What can you do about it? Will you have to
maintain several versions of your Web site: one for existing Web browsers
and one for each new device with its own subset?

XSL to the rescue! It will be easy to manage the diversity of browsers and
platforms by maintaining the document source in XML and by converting
to the appropriate XHTML subset with XSLT. In essence, this is how I
manage the e-zine. Figure 5.7 illustrates how this works.

144 Chapter 5: XSL Transformation

Figure 5.7: Maintain one XML document and convert it to the appropriate
markup language.

07 2429 CH05 2.29.2000 2:21 PM Page 144

Where to Apply the Style Sheet
So far, we have converted the XML documents before publishing them. The
client never sees XML; it manipulates only HTML.

Today, this is the realistic option because few users have an XML-enabled
browser such as Internet Explorer 5.0 or a beta version of Mozilla 5.0
(Mozilla is the open source version of Netscape Communicator).
Furthermore, the XSL recommendation is not final yet so implementations
of XSL processors are not always compatible with one another.

Yet, if your users have XML-enabled browsers, it is possible to send them
raw XML documents and style sheets. The browser dynamically applies the
style sheets and renders the documents. Figure 5.8 contrasts the two
options.

145Where to Apply the Style Sheet

Figure 5.8: Style sheets on the server or on the client

Internet Explorer 5.0

C A U T I O N
Because XSL is still in draft, browser implementations are not compatible. The material
in this section works with Internet Explorer 5.0, which implements an early draft of XSL
and is not compatible with the current draft, much less with the future recommenda-
tion.

The processing instruction xml-stylesheet associates a style sheet with the
current document. It takes two parameters, an href to the style sheet and
the type of the style sheet (text/xsl, in this case).
<?xml-stylesheet href=”simple-ie5.xsl” type=”text/xsl”?>

Listing 5.6 is the XML document with the appropriate processing instruc-
tion for Internet Explorer 5.0.
Listing 5.6: The XML Document Prepared for Internet Explorer 5.0

<?xml version=”1.0”?>

<?xml-stylesheet href=”simple-ie5.xsl” type=”text/xsl”?>

E X A M P L E

continues

07 2429 CH05 2.29.2000 2:21 PM Page 145

Listing 5.6: continued

<article fname=”19990101_xsl”>

<title>XML Style Sheets</title>

<date>January 1999</date>

<copyright>1999, Benoît Marchal</copyright>

<abstract>Style sheets add flexibility to document viewing.</abstract>

<keywords>XML, XSL, style sheet, publishing, web</keywords>

<section>

<p>Send comments and suggestions to <url protocol=”mailto”>bmarchal@
➥pineapplesoft.com</url>.</p>

</section>

<section>

<title>Styling</title>

<p>Style sheets are inherited from SGML, an XML ancestor. Style sheets
➥originated in publishing and document management applications. XSL is XML’s
➥standard style sheet, see <url>http://www.w3.org/Style</url>.</p>

</section>

<section>

<title>How XSL Works</title>

<p>An XSL style sheet is a set of rules where each rule specifies how to format
➥certain elements in the document. To continue the example from the previous
➥section, the style sheets have rules for title, paragraphs and keywords.</p>

<p>With XSL, these rules are powerful enough not only to format the document
➥but also to reorganize it, e.g. by moving the title to the front page or
➥extracting the list of keywords. This can lead to exciting applications of XSL
➥outside the realm of traditional publishing. For example, XSL can be used to
➥convert documents between the company-specific markup and a standard one.</p>

</section>

<section>

<title>The Added Flexibility of Style Sheets</title>

<p>Style sheets are separated from documents. Therefore one document can have
➥more than one style sheet and, conversely, one style sheet can be shared
➥amongst several documents.</p>

<p>This means that a document can be rendered differently depending on the media
➥or the audience. For example, a “managerial” style sheet may present a summary
➥view of a document that highlights key elements but a “clerical” style sheet
➥may display more detailed information.</p>

</section>

</article>

Furthermore, the style sheet must be adapted to the older version of XSL
that Internet Explorer supports. Listing 5.7 is the adapted style sheet.
Figure 5.9 shows the result in Internet Explorer.

146 Chapter 5: XSL Transformation

07 2429 CH05 2.29.2000 2:21 PM Page 146

Listing 5.7: XSLT Style Sheet for Internet Explorer 5.0

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/TR/WD-xsl”

xmlns=”http://www.w3.org/TR/REC-html40”

>

<xsl:template match=”*”>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match=”text()”>

<xsl:value-of select=”.”/>

</xsl:template>

<xsl:template match=”/”>

<HTML>

<HEAD>

<TITLE>Pineapplesoft Link</TITLE>

</HEAD>

<BODY>

<xsl:apply-templates/>

</BODY>

</HTML>

</xsl:template>

<xsl:template match=”section/title”>

<P><I><xsl:apply-templates/></I></P>

</xsl:template>

<xsl:template match=”article/title”>

<P><xsl:apply-templates/></P>

</xsl:template>

<xsl:template match=”url”>

<xsl:attribute name=”href”>

<xsl:apply-templates/>

</xsl:attribute>

<xsl:apply-templates/>

147Where to Apply the Style Sheet

continues

07 2429 CH05 2.29.2000 2:21 PM Page 147

Listing 5.7: continued

</xsl:template>

<xsl:template match=”url[@protocol=’mailto’]”>

<A>

<xsl:attribute name=”href”>mailto:<xsl:apply-templates/>

</xsl:attribute>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match=”p”>

<P><xsl:apply-templates/></P>

</xsl:template>

<xsl:template match=”abstract | date | keywords | copyright”/>

</xsl:stylesheet>

148 Chapter 5: XSL Transformation

O U T P U T

Figure 5.9: Internet Explorer 5.0 renders XML.

Changes to the Style Sheet
The style sheet has been adapted in two places. First, the XSL namespace
points to an earlier version of XSL.

07 2429 CH05 2.29.2000 2:21 PM Page 148

<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/TR/WD-xsl”

xmlns=”http://www.w3.org/TR/REC-html40”

>

Second, Internet Explorer has no built-in templates. They must be declared
explicitly in the style sheet.
<xsl:template match=”*”>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match=”text()”>

<xsl:value-of select=”.”/>

</xsl:template>

C A U T I O N
Internet Explorer 5.0 does not use the standard priority rules. Therefore, the default
templates must be at the top of the style sheet; otherwise, they would have higher
priority than our rules.

Advanced XSLT
XSLT is a powerful transformation mechanism. So far, we have only used a
subset of it. Our resulting document follows a structure that is close to the
original document. Elements might have been added or removed from the
tree but they are not reorganized.

Yet, it is often useful to reorganize completely the source document. For
example, we might want to create a table of contents at the beginning of
the document.

This is possible with the xsl:value-of element. xsl:value-of inserts arbi-
trary elements from the source tree anywhere in the resulting tree.

Listing 5.8 is a more sophisticated style sheet that, among other things,
creates a table of contents.
Listing 5.8: A More Powerful XSLT Style Sheet

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!DOCTYPE xsl:stylesheet [

<!ENTITY copy “©”>

]>

<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”

149Advanced XSLT

E X A M P L E

continues

07 2429 CH05 2.29.2000 2:21 PM Page 149

Listing 5.8: continued

xmlns=”http://www.w3.org/TR/REC-html40”>

<xsl:output method=”html”/>

<xsl:template match=”/”>

<HTML>

<HEAD>

<TITLE><xsl:call-template name=”title”/></TITLE>

<META NAME=”keywords”>

<xsl:attribute name=”CONTENT”>

<xsl:value-of select=”article/keywords”/>,

</xsl:attribute>

</META>

</HEAD>

<BODY>

<P><xsl:call-template name=”title”/></P>

<P>Table of Contents</P>

<xsl:for-each select=”article/section/title”>

<A>

<xsl:attribute name=”HREF”>
➥#<xsl:value-of select=”generate-id()”/>

</xsl:attribute>

<xsl:value-of select=”.”/>

</xsl:for-each>

<xsl:apply-templates/>

<P>Copyright © <xsl:value-of select=”article/copyright”/></P>

</BODY>

</HTML>

</xsl:template>

<xsl:template name=”title”>

<xsl:value-of select=”/article/title”/> (

<xsl:value-of select=”/article/date”/>)

</xsl:template>

150 Chapter 5: XSL Transformation

07 2429 CH05 2.29.2000 2:21 PM Page 150

<xsl:template match=”section/title”>

<P><I><A>

<xsl:attribute name=”NAME”>

<xsl:value-of select=”generate-id()”/>

</xsl:attribute>

<xsl:apply-templates/>

</I></P>

</xsl:template>

<xsl:template match=”url”>

<xsl:attribute name=”href”>

<xsl:value-of select=”.”/>

</xsl:attribute>

<xsl:value-of select=”.”/>

</xsl:template>

<xsl:template match=”url[@protocol=’mailto’]”>

<A>

<xsl:attribute name=”href”>mailto:<xsl:value-of select=”.”/>

</xsl:attribute>

<xsl:value-of select=”.”/>

</xsl:template>

<xsl:template match=”p”>

<P><xsl:apply-templates/></P>

</xsl:template>

<xsl:template match=”article/title | abstract | date |

keywords | copyright”/>

</xsl:stylesheet>

151Advanced XSLT

07 2429 CH05 2.29.2000 2:21 PM Page 151

You can use LotusXSL to apply this style sheet. It generates the HTML doc-
ument in Listing 5.9. Figure 5.10 shows the result in a browser.
Listing 5.9: The Resulting HTML Document

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>

<HTML>

<HEAD>

<TITLE>XML Style Sheets (January 1999)</TITLE>

<META name=”keywords” content=”XML, XSL, style sheet, publishing, web”>

</HEAD>

<BODY>

<P>XML Style Sheets (January 1999)</P>

<P>Table of Contents</P>

Styling

How XSL Works

The Added Flexibility of Style Sheets

<P>Send comments and suggestions to bmarchal@pineapplesoft.com.</P>

<P><I>Styling</I></P>

<P>Style sheets are inherited from SGML, an XML ancestor. Style sheets
➥originated in publishing and document management applications. XSL is XML’s
➥standard style sheet, see <A target=”_blank”
➥href=”http://www.w3.org/Style”>http://www.w3.org/Style.</P><P><I><A name=
➥”N-634270327”>How XSL Works</I></P>

<P>An XSL style sheet is a set of rules where each rule specifies how to format
➥certain elements in the document. To continue the example from the previous
➥section, the style sheets have rules for title, paragraphs and keywords.</P>

<P>With XSL, these rules are powerful enough not only to format the document
➥but also to reorganize it, e.g. by moving the title to the front page or
➥extracting the list of keywords. This can lead to exciting applications of XSL
➥outside the realm of traditional publishing. For example, XSL can be used to
➥convert documents between the company-specific markup and a standard one.</P>

<P><I>The Added Flexibility of Style Sheets</I></P>

<P>Style sheets are separated from documents. Therefore one document can have
➥more than one style sheet and, conversely, one style sheet can be shared
➥amongst several documents.</P>

<P>This means that a document can be rendered differently depending on the media
➥or the audience. For example, a “managerial” style sheet may present a summary
➥view of a document that highlights key elements but a “clerical” style sheet
➥may display more detailed information.</P>

<P>Copyright ©1999, Benoît Marchal</P></BODY></HTML>

152 Chapter 5: XSL Transformation

O U T P U T

07 2429 CH05 2.29.2000 2:21 PM Page 152

Figure 5.10: The resulting HTML document in a browser

Declaring HTML Entities in a Style Sheet
This style sheet has an internal DTD to declare the copy entity—an
HTML entity. HTML has many entities that XML does not recognize.
<!DOCTYPE xsl:stylesheet [

<!ENTITY copy “©”>

]>

Reorganizing the Source Tree
The list of keywords must appear in an HTML META element. The following
example extracts the keywords from the source tree, with the xsl:value-of
element.
<META NAME=”keywords”>

<xsl:attribute name=”CONTENT”>

<xsl:value-of select=”article/keywords”/>,

</xsl:attribute>

</META>

<META name=”keywords” content=”XML, XSL, style sheet, publishing, Web”>

C A U T I O N
Because select points to any element in the source tree, paths tend to be longer
than for the match attribute. It is common to spell out a path from root to element.

153Advanced XSLT

O U T P U T

E X A M P L E

O U T P U T

07 2429 CH05 2.29.2000 2:21 PM Page 153

Calling a Template
When the same styling instructions are used at different places, group
them in a named template. For example, titles appear in the HTML title
and in the body of the document.
<xsl:template name=”title”>

<xsl:value-of select=”/article/title”/> (

<xsl:value-of select=”/article/date”/>)

</xsl:template>

<!-- ... -->

<P><xsl:call-template name=”title”/></P>

This simplifies maintenance because changes to the title are localized in a
single template.

xsl:include imports a style sheet into the current style sheet. The follow-
ing imports the core.xsl style sheet:
<xsl:include href=”core.xsl”/>

xsl:include must be a direct child of xsl:stylesheet, it cannot appear in
xsl:template for example.

Repetitions
Sometimes a path points to several elements. For example, article/
section/title points to the three section titles. To loop over the elements,
use xsl:for-each. The following rule builds a table of contents with section
titles:

<xsl:for-each select=”article/section/title”>

<A>

<xsl:attribute name=”HREF”>

➥#<xsl:value-of select=”generate-id()”/>

</xsl:attribute>

<xsl:value-of select=”.”/>

</xsl:for-each>

Styling

How XSL Works

The Added Flexibility of Style Sheets

154 Chapter 5: XSL Transformation

E X A M P L E

E X A M P L E

E X A M P L E

O U T P U T

07 2429 CH05 2.29.2000 2:21 PM Page 154

xsl:for-each has a select attribute so it needs a fully qualified path.
However, within the loop, the current element is the selection that
xsl:value-of retrieves through the “.” path.

The template also introduces the generate-id() function. The function
returns a unique identifier for the current node.

Using XSLT to Extract Information
As the various examples in this chapter illustrate, XSLT is a very powerful
and flexible mechanism that serves many purposes.

Indeed XSLT is not limited to styling. It also can be used to extract infor-
mation from XML documents.

Imagine I need to generate an index of articles. The XSLT solution is a two-
step process. In the first step, a style sheet extracts useful information from
the documents. Extracting information can be thought of as transforming a
large XML document into a smaller one.

The first step creates as many extract documents as there are originals.
The next step is to merge all the extracts in one listing. It is then a simple
issue to convert the listing in HTML. Figure 5.11 illustrates the process.

155Using XSLT to Extract Information

Figure 5.11: How using XSL can extract information from XML documents

A N E W S TA N D A R D
The W3C works on a new standard XQL, the XML Query Language, that will offer a
better solution to this problem. XQL can query multiple documents stored in an XML
database.

XQL will use paths similar or identical to XSLT so it will be familiar. Because it works
across several documents, XQL is really designed for XML databases. XML databases
store documents in binary format to provide faster access.

To experiment with XQL without buying a database, you can download the GMD-IPSI XQL
engine from xml.darmstadt.gmd.de/xml. The engine is written in Java but it has a
command-line interface.

07 2429 CH05 2.29.2000 2:21 PM Page 155

Listing 5.10 is a style sheet to extract the URL, the title, the abstract, and
the date of an article document.
Listing 5.10: Style Sheet to Extract Data

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”>

<xsl:template match=”/article”>

<article>

<url><xsl:value-of select=”@fname”/>.html</url>

<title><xsl:value-of select=”title”/></title>

<abstract><xsl:value-of select=”abstract”/></abstract>

<date><xsl:value-of select=”date”/></date>

</article>

</xsl:template>

</xsl:stylesheet>

Listing 5.11: An Extract from the Original Document

<article><url>19990101_xsl.html</url><title>XML Style
➥Sheets</title><abstract>Style sheets add flexibility to document
➥viewing.</abstract><date>January 1999</date></article>

By applying the style sheet against all my articles, I will create as many
extract files as I have articles. Each file is similar to Listing 5.11.

The next step is to merge them in an XML listing. The trick to create a
well-formed document is to merge two additional files with markup for the
topmost element. I place the markup in two ASCII files, opening.tag and
closing.tag. Opening.tag contains
<?xml version=”1.0” encoding=”ISO-8859-1”?>

<articles>

and closing.tag contains
</articles>

Listing 5.12 is the DOS batch that merges all the files. Running it creates
index.xml (see Listing 5.13).
Listing 5.12: The DOS Batch to Compile the Index

set xslprocessor=java -classpath c:\lotusxsl\xerces.jar;

➥c:\lotusxsl\lotusxsl.jar com.lotus.xsl.Process

set files= 19990701_jini 19990601_book 19990101_xsl

➥for %%0 in (%files%) do %xslprocessor% -in %%0.xml -out %%0.xtr

156 Chapter 5: XSL Transformation

E X A M P L E

E X A M P L E

E X A M P L E

07 2429 CH05 2.29.2000 2:21 PM Page 156

-xsl extract.xsl

copy opening.tag index.xml

for %%0 in (%files%) do copy index.xml /a + %%0.xtr

➥/a index.xml /a

copy index.xml + closing.tag index.xml

T I P
Don’t pass an xml, html, or text argument on the command-line so that LotusXSL gen-
erates a document without the XML declaration.

Listing 5.13: The Compilation of All Small Extract Files

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<articles>

<article><url>19990101_xsl.html</url><title>XML Style
➥Sheets</title><abstract>Style sheets add flexibility to document
➥viewing.</abstract><date>January 1999</date></article>

<article><url>19990701_jini.html</url><title>Jini</title><abstract>Jini is a new
➥offering from Sun. Jini extends Java towards distributed computing in novative
➥ways. In particular, Jini builds on the concept of “spontaneous
➥networking.”</abstract><date>July 1999</date></article>

<article><url>19990601_book.html</url><title>Well Worth Reading</title><abstract>

This issue is atypical. It is not about technology, it is not about tools. It
➥is about a very interesting book: “The inmates are running the
➥asylum.”</abstract><date>June 1999</date></article>

</articles>

The style sheet in listing 5.14 is used to convert index.xml in HTML.
Figure 5.12 shows the result in a browser.
Listing 5.14: Styling the Index

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”

xmlns=”http://www.w3.org/TR/REC-html40”>

<xsl:output method=”html”/>

<xsl:template match=”/”>

<HTML>

<HEAD>

<TITLE>Pineapplesoft Link: Archives</TITLE>

</HEAD>

157Using XSLT to Extract Information

O U T P U T

E X A M P L E

continues

07 2429 CH05 2.29.2000 2:21 PM Page 157

Listing 5.14: continued

<BODY>

<xsl:for-each select=”articles/article”>

<A>

<xsl:attribute name=”HREF”>

<xsl:value-of select=”url”/>

</xsl:attribute>

<xsl:value-of select=”title”/>

<xsl:value-of select=”date”/>

<xsl:value-of select=”abstract”/>

</xsl:for-each>

</BODY>

</HTML>

</xsl:template>

</xsl:stylesheet>

158 Chapter 5: XSL Transformation

Figure 5.12: The listing in a browser

O U T P U T

07 2429 CH05 2.29.2000 2:21 PM Page 158

What’s Next
In this chapter, you learned how to use the transformation half of XSL. The
next chapter is dedicated to styling XML directly, no conversion required,
with CSS and XSLFO.

The combination of XSLT and CSS gives you total control over how your
document is displayed.

159What's Next

07 2429 CH05 2.29.2000 2:21 PM Page 159

08 2429 CH06 2.29.2000 2:22 PM Page 160

6

XSL Formatting Objects and Cascading
Style Sheet

The previous chapter was a first look at styling XML documents. You
learned how to use XSLT to convert XML documents to HTML and other
formats.

This chapter picks up from there. It discusses Cascading Style Sheet (CSS)
and XSLFO (XSL Formatting Objects). Conceptually, CSS and XSLFO are
similar, but so far XSLFO has achieved limited market acceptance so I will
concentrate on CSS and look only at how XSLFO differs.

Specifically, in this chapter, you will learn

• how to display XML without converting it to HTML

• how to customize XML editor for author comfort

08 2429 CH06 2.29.2000 2:22 PM Page 161

Rendering XML Without HTML
HTML has a fixed set of elements and HTML browsers are hard-coded to
render them onscreen. In other words, HTML browsers know that the title
element will appear in the title bar; they know that hyperlinks are blue
and underlined. They need not be told how to style elements.

XML, on the contrary, has no predefined set of elements. It is up to you, the
author, to define elements. Consequently, an XML browser cannot be hard-
coded. It needs to be told how to style each element you defined.

In the previous chapter, you worked around the difficulty by converting
XML to HTML. Ultimately, the browser was a standard HTML browser
rendering HTML documents. This is ideal for backward compatibility but
it also limits what you can do with XML documents.

CSS (and XSLFO) have a different approach to the problem. CSS describes
directly how to render documents onscreen or on paper. CSS is the mecha-
nism you use to tell the browser how to style the elements. CSS deals with
fonts, colors, text indentation, and so on. Figure 6.1 illustrates the differ-
ence between XSLT and CSS.

162 Chapter 6: XSL Formatting Objects and Cascading Style Sheet

Figure 6.1: How XSLT differs from CSS

For example, to render a section title with XSLT, you used the following
template:
<xsl:template match=”section/title”>

<P><I><xsl:apply-templates/></I></P>

</xsl:template>

E X A M P L E

08 2429 CH06 2.29.2000 2:22 PM Page 162

The equivalent in CSS would be
section>title

{

display: block;

font-style: italic;

}

The XSLT style sheet converts the XML title element in two HTML ele-
ments: paragraph and italicized text. The CSS style sheet retains the origi-
nal elements but says how to display them. The title is an independent
block of italicized text.

T I P
If we were to compare XML style sheets with word processor commands, XSLT is simi-
lar to the “Export” or the “Save As…” command that saves the current document in a
different format. CSS is closer to commands in the “Format” menu.

The Basics of CSS
The CSS recommendation was originally drafted for HTML. Over the last
few years, the complexity of HTML has grown dramatically. In particular,
many elements have been added to HTML to support styling, such as
<CENTER> or .

Gradually, it appeared that adding even more elements to HTML was not
a viable solution for the long term because it leads to very complex Web
pages that are difficult to read and difficult to maintain as well as unneces-
sarily large.

The W3C responded with a style sheet language, CSS. CSS cleanly sepa-
rates styling from the page content. Although it was originally designed for
HTML, CSS also works with XML.

Two versions of CSS have been released so far: CSS1 and CSS2. CSS2
builds on CSS1 but it improves XML support, adds new styling options, and
supports alternate media such as paper printing and aural rendering (for
blind persons).

C A U T I O N
At the time of this writing, Internet Explorer 5.0 and Mozilla support CSS for XML docu-
ments. Other browsers support CSS but for HTML documents.

Currently, most browsers implement at least some support for CSS1.
Unfortunately, they are not consistent in the features they support.
Browsers that support a subset of CSS2 are appearing on the market.

163The Basics of CSS

08 2429 CH06 2.29.2000 2:22 PM Page 163

Microsoft Internet Explorer supports CSS1. Mozilla, the open source ver-
sion of Netscape Communicator, has a descent support for CSS 1 and CSS
2. Netscape Communicator 4.x supports CSS1 but it does not support XML.

If you are curious, Web Review tests the major browsers for CSS compati-
bility. The updated results are at webreview.com/wr/pub/guides/style/
lboard.html.

Simple CSS
Listing 6.1 is an example of how to use a CSS style sheet to render the doc-
ument you used throughout Chapter 5, “XSL Transformation.”
Listing 6.1: A Simple CSS

/* a simple style sheet */

article

{

font-family: Palatino, Garamond, “Times New Roman”, serif;

font-size: 10pt;

margin: 5px;

}

article, p, title

{

display: block;

margin-bottom: 10px;

}

url
{

text-decoration: underline;
color: blue;

}

article title
{

font-size: larger;
font-weight: bold;

}

section title
{

font-style: italic;
}

copyright, abstract, keywords, date
{

display: none;

}

164 Chapter 6: XSL Formatting Objects and Cascading Style Sheet

E X A M P L E

08 2429 CH06 2.29.2000 2:22 PM Page 164

As you can see, the syntax is distinctively not XML. A CSS style sheet is
a list of rules (similar to XSL templates). Each rule starts with a selector
(similar to XSL path) to which properties are associated.

As the name implies, the selector selects to which element the properties
apply.

To attach the style sheet to a document, use the familiar XML-stylesheet
processing instruction. The type, however, must adapt to text/css. Unlike
XSLT, there is no command-line processor for CSS. The browser is the
processor. Figure 6.2 shows the document in Listing 6.2 loaded in Internet
Explorer 5.0.
Listing 6.2: An XML Document Linking to a CSS Style Sheet

<?xml version=”1.0”?>

<?xml-stylesheet href=”article.css” type=”text/css”?>

<article fname=”19990101_xsl”>

<title>XML Style Sheets</title>

<date>January 1999</date>

<copyright>1999, Benoît Marchal</copyright>

<abstract>Style sheets add flexibility to document viewing.</abstract>

<keywords>XML, XSL, style sheet, publishing, web</keywords>

<section>

<p>Send comments and suggestions to <url protocol=”mailto”>
➥bmarchal@pineapplesoft.com</url>.</p>

</section>

<section>

<title>Styling</title>

<p>Style sheets are inherited from SGML, an XML ancestor. Style sheets
➥originated in publishing and document management applications. XSL is XML’s
➥standard style sheet, see <url>http://www.w3.org/Style</url>.</p>

</section>

<section>

<title>How XSL Works</title>

<p>An XSL style sheet is a set of rules where each rule specifies how to format
➥certain elements in the document. To continue the example from the previous
➥section, the style sheets have rules for title, paragraphs and keywords.</p>

<p>With XSL, these rules are powerful enough not only to format the document
➥but also to reorganize it, e.g. by moving the title to the front page or
➥extracting the list of keywords. This can lead to exciting applications of XSL
➥outside the realm of traditional publishing. For example, XSL can be used to
➥convert documents between the company-specific markup and a standard one.</p>

</section>

<section>

<title>The Added Flexibility of Style Sheets</title>

165The Basics of CSS

continues

08 2429 CH06 2.29.2000 2:22 PM Page 165

Listing 6.2: continued

<p>Style sheets are separated from documents. Therefore one document can have
➥more than one style sheet and, conversely, one style sheet can be shared
➥amongst several documents.</p>

<p>This means that a document can be rendered differently depending on the media
➥or the audience. For example, a “managerial” style sheet may present a summary
➥view of a document that highlights key elements but a “clerical” style sheet
➥may display more detailed information.</p>

</section>

</article>

166 Chapter 6: XSL Formatting Objects and Cascading Style Sheet

Figure 6.2: The XML document loaded into a browser

The next sections examine the style sheet in more detail.

Comments
Comments are enclosed in /* and */, like in C. Comments are ignored by
the browser. For example, you could write
/* a simple style sheet */

Selector
CSS rules are associated with elements through selectors. Unfortunately,
selectors have a different syntax than XSL paths!

To select an element, use its name. The following example applies a rule to
all article elements:
article {

font-family: Palatino, Garamond, “Times New Roman”, serif;

E X A M P L E

E X A M P L E

08 2429 CH06 2.29.2000 2:22 PM Page 166

font-size: 10pt;

margin: 5px;

}

To select several elements, separate them with commas. The following
example applies to the article, p, and title elements. It is equivalent to
article | p | title in XSL. The “*” character matches all elements.
article, p, title {

display: block;

margin-bottom: 10px;

}

To select an element depending on its ancestor, list the two elements sepa-
rated by spaces. The following example selects every title with an article
ancestor, not only a direct descendant from an article. In other words, it is
equivalent to the article//title XSL path, not article/title.
article title {

font-size: larger;
font-weight: bold;

}

Priority
1. If two or more selectors point to the same element, then the rules are

merged. Therefore, the following example
p {

display: block;
}

p {

font-size: 10pt;

}

is equivalent to
p {

display: block;
font-size: 10pt;

}

2. However, if the properties conflict with each other, then those rules
with a more specific selector have a higher priority. Therefore, the fol-
lowing example

article section title {

font-style: italic;

}

167The Basics of CSS

E X A M P L E

E X A M P L E

E X A M P L E

E X A M P L E

08 2429 CH06 2.29.2000 2:22 PM Page 167

has a higher priority than
article title {

font-style: normal;

}

3. Furthermore, rules that appear higher in the style sheet have a lower
priority. So, in the following example, the second rule will preempt the
first rule:

article title {

font-style: normal;

}

section title {

font-style: italic;

}

Properties
Properties are enclosed in curly brackets. Each property has a name fol-
lowed by a colon and one or more values (separated by commas). A semi-
colon terminates the property.
article {

font-family: Palatino, Garamond, “Times New Roman”, serif;

font-size: 10pt;

margin: 5px;

}

Flow Objects and Boxes
The browser paints the document on what is known as the canvas. The
canvas is simply the area onscreen or on paper where the browser paints.
The CSS rules describe using flow objects to describe how to paint on the
canvas.

Flow Objects
To render the screen or print a page, the browser uses flow objects. The con-
cept is very simple: The document flows from the top to the bottom of the
canvas. Anything in the flow (characters, words, paragraphs, images) is a
flow object.

Style sheets associate properties to flow objects. CSS can address most flow
objects from the element upwards. The recommendation even specifies how
to associate properties to characters or words but browsers don’t implement
it, yet.

168 Chapter 6: XSL Formatting Objects and Cascading Style Sheet

E X A M P L E

E X A M P L E

08 2429 CH06 2.29.2000 2:22 PM Page 168

Properties Inheritance
Flow objects inherit most of their properties from their parents. In the
example, section elements inherit their properties from the article element
because sections are included in the article. Paragraph elements in turn
inherit their properties from sections.

However, if a rule is attached to the paragraph element, it overrides some
of the properties inherited from the section. The url element, which is
included in a paragraph, in turn inherits its properties from the paragraph,
including those properties overridden by the paragraph rule. Figure 6.3
illustrates the inheritance.

169Flow Objects and Boxes

Figure 6.3: Inheriting properties

The inheritance works for most properties. Some properties, however, are
not inherited. I will draw your attention to them in the following discus-
sion.

Boxes
The simplest flow object is the box. As the name implies, a box is a rectan-
gular area on the screen or on paper. Every element is rendered in a box.

Listing 6.3 illustrates how to make the boxes visible in a browser. Figure
6.4 shows the result.
Listing 6.3: A Style Sheet to Paint Titles in Boxes

article

{

font-family: Palatino, Garamond, “Times New Roman”, serif;

font-size: 10pt;

margin: 10px;

}

article, p, section, title

{

E X A M P L E

continues

08 2429 CH06 2.29.2000 2:22 PM Page 169

Listing 6.3: continued

display: block;

}

p, title

{

border-style: solid;

border-width: 1px;

}

url

{

color: blue;

background-color: silver;

}

article title

{

font-size: larger;

font-weight: bold;

padding: 10px;

margin: 25px;

}

section title

{

font-style: italic;

padding: 0px;

margin: 10px;

}

copyright, abstract, keywords, date

{

display: none;

}

170 Chapter 6: XSL Formatting Objects and Cascading Style Sheet

08 2429 CH06 2.29.2000 2:22 PM Page 170

Figure 6.4: Painting titles in boxes

CSS supports several types of boxes. The important ones are

• block box, which has a line break before and after it. It is the most
important element in organizing a document on the screen. In the
example, you can see that paragraphs are rendered as a block box.

• inline box, which appears in a single line within a block box. There are
no line breaks before or after it. In the example, the url element is
rendered with an inline box.

• anonymous box, which is created automatically by the browser when
needed. For example, the browser creates an anonymous box when a
line spans several lines.

Figure 6.5 illustrates the major properties of boxes:

• margin, the space between the border and the edges

• box border, a rectangle around the box

• padding, the space between the text and the border

• element, the content

171Flow Objects and Boxes

O U T P U T

08 2429 CH06 2.29.2000 2:22 PM Page 171

Figure 6.5: Box properties

In Figure 6.4, the large padding and large margins of the main title are vis-
ible. Compare with section titles that have no padding and a small margin.

Thanks to its silver background, you can see the box around the URL. This
box is an inline box—you can see it’s contained in the box of a paragraph.

CSS Property Values
Four values are commonly used by the properties: length, percentage, color,
and URL. Before going into the specifics of properties, let’s first review
these values.

Length
Lengths are used for widths, heights, and sizes. A length is a number fol-
lowed by a unit with no spaces between them. For example, the following
two properties define a font size of 10 points and a margin of 5 pixels,
respectively:
font-size: 10pt;

margin: 5px;

Units are represented by two-letter abbreviations:

• em: ems, the height of the element’s font, this unit is relative to the
element’s font

• ex: x-height, the height of the “x” letter, this unit is relative to the ele-
ment’s font

• px: pixels

• in: inches

• cm: centimeters

• mm: millimeters

172 Chapter 6: XSL Formatting Objects and Cascading Style Sheet

E X A M P L E

08 2429 CH06 2.29.2000 2:22 PM Page 172

• pt: points, where a point is 1/72 inch

• pc: picas, where a pica is 12 points

Percentage
Percentages are used for width, height, and position. A percentage is a
number followed by the percent sign “%”. There are no spaces between the
number and the sign. For example, the following rule defines a line height,
which is twice the text:
line-height: 200%

Color
1. Many properties accept a color value. There are three solutions to re-

present a color. The first one (borrowed from HTML) has the form:
#00ffe1—that is, an RGB value in hexadecimal. This example selects
a green background:

background-color: #00FF00

N O T E
With RGB, three numbers represent the proportion of red, green, and blue in the color.
The three numbers are represented in hexadecimal and their value goes from 0 to 255
(or ff in hexadecimal).

Therefore, #FF0000 is pure red (maximum red, no green or blue) whereas #000022 is
light blue (no red or green, some blue).

Shades of gray have the same amount of red, green, and blue. The following are all
shades of gray: #222222, #555555, or #cccccc.

Most graphics programs can tell you the amount of red, green, and blue in a color.

2. The second solution is to define the RGB value with integers or percent-
ages. This has the form rgb(0,15,128). Integer values go from 0 to 255,
percentages from 0% to 100%. The following examples select blue text:

color: rgb(0,0,255)

color: rgb(0%,0%,100%)

3. Finally if, like me, you prefer readable colors to RGB values, then you
will like keywords. Acceptable values for the keyword are black,
maroon, green, navy, silver, red, lime, blue, gray, purple, olive, teal,
white, fuchsia, yellow, and aqua. The following example paints the
border in fuchsia: border-color: fuchsia

URL
URLs are used for images. They have the form url(image.gif). The following
example uses the image logo.gif available from www.pineapplesoft.com/
images as background:
background: url(http://www.pineapplesoft.com/images/logo.gif)

173CSS Property Values

E X A M P L E

E X A M P L E

E X A M P L E

E X A M P L E

E X A M P L E

08 2429 CH06 2.29.2000 2:22 PM Page 173

Box Properties
It is futile to try to cover every CSS property in this chapter. There are so
many properties that I could write a book about it. Instead, I will concen-
trate on the most important properties—those properties that are fre-
quently used. We will start with the properties associated with boxes.

For more information on specific properties, consult the recommendation at
www.w3.org/TR/1998/REC-CSS2-19980512.

Display Property
The display property describes how an element is displayed. The following
example selects the element as a block box:
display: block;

display accepts one of the four values: block, inline, list-item, and none.
Lists are outside the scope of this chapter. block and inline create block
boxes and inline boxes, respectively. none hides the element.

C A U T I O N
The display property is not inherited. Make sure to explicitly redefine display for each
block.

Margin Properties
There are four properties to set the margin of a box. margin-top, margin-
right, margin-bottom, and margin-left apply to each side of the margin as
in the following example:
margin-top: 10px;

Acceptable values include an absolute length, a percentage relative to the
parent’s width, or the value auto. As the name implies, auto deduces the
length from the size of the content.

The margin property sets the four sides in one pass. It accepts either one
value if the four margins have the same length or four values in the order
top, right, bottom, and left. The following example:
margin-top: 30%;

margin-right: 30px;

margin-bottom: 50%;

margin-left: auto;

174 Chapter 6: XSL Formatting Objects and Cascading Style Sheet

E X A M P L E

E X A M P L E

E X A M P L E

08 2429 CH06 2.29.2000 2:22 PM Page 174

is equivalent to
margin: 10px 30px 15px 50px;

The following example sets the margin to 10 pixels wide in every direction:
margin: 10px;

Padding Properties
Padding is defined exactly like margins with the properties padding-top,
padding-right, padding-bottom, padding-left, and padding except that auto
is not an acceptable value. The following example sets a padding of 0.2
inch:
padding: 0.2in;

Border-Style Properties
The border-style property sets the style of the border to none, dotted,
dashed, solid, double, groove, ridge, inset, or outset. The following exam-
ple paints a solid border around the box element:
border:solid;

It is possible to set a different style for the top, right, bottom, and left parts
of the border by repeating the value as in
border: solid, dotted, double, inset;

T I P
The border of an element is not visible until the border-style property is set. By
default, border-style is set to none.

Border-Width Properties
The border-top-width, border-right-width, border-bottom-width, and
border-left-width properties control the width of each border indepen-
dently. Acceptable values are thin, medium, thick, or an absolute length.

In most cases, it is easier to set the four values at once, with the border-
width property, as in the following example:
border-width: thin;

Border Shorthand
The border-top, border-right, border-bottom, border-left, and border
properties are shorthand for all previous properties. They list the width,
style, and color of the border as in
border: thin solid silver;

175Box Properties

E X A M P L E

E X A M P L E

E X A M P L E

E X A M P L E

E X A M P L E

E X A M P L E

08 2429 CH06 2.29.2000 2:22 PM Page 175

Text and Font Properties
After boxes, text and font properties are the most widely used properties.

Font Name
The font-family property selects the name of the font. It is a good idea to
list several font names in case the preferred font is not available to the
browser. The following example attempts to select a serif font. The list goes
from more specific font (Palatino) to more common ones (Times New
Roman). The list ends with a generic family name for maximal safety:
font-family: Palatino, Garamond, “Times New Roman”, serif;

Generic names (serif, sans-serif, cursive, fantasy, and monospace) select
a typical font for the family.

Figure 6.6 shows the generic fonts on my computer.

176 Chapter 6: XSL Formatting Objects and Cascading Style Sheet

E X A M P L E

Figure 6.6: Font samples on my machine

Font Size
As the name implies, the font-size property selects the size of characters.
The font-size value can be a length or xx-small, x-small, small, medium,
large, x-large, and xx-large. Finally, it is possible to use values relative to
the inherited size: larger and smaller.

The medium size font is around 10pt so the following two examples should
be identical:
font-size: medium;

font-size: 10pt;

E X A M P L E

08 2429 CH06 2.29.2000 2:22 PM Page 176

Font Style and Weight
The font-style and font-weight properties indicate whether the font is
italicized or in bold, respectively. The following example sets the font to
bold and italic:
font-weight: bold;

font-style: italic;

font-style accepts only three values: normal, italic, and oblique. Italic
and oblique are similar but italic uses a special font drawn for italic
whereas oblique is the original font bent.

font-weight accepts the following values: normal, bold, bolder, lighter, 100,
200, 300, 400, 500, 600, 700, 800, 900.

normal and bold are self-explanatory. bolder and lighter are relative to the
inherited weight value. normal is equivalent to 400 and bold is 700.

Text Alignment
There are two properties to control text alignment: text-align controls
alignment against the left and right margins, while vertical-align speci-
fies vertical alignment. Use vertical alignment to write x2. The following
example prints the text in superscript justified against the right margin:
text-align: right;

vertical-align: super;

text-align accepts left, right, center, and justify. vertical-align
accepts baseline, sub, super, top, text-top, middle, bottom, text-bottom,
or a percentage. You will recognize values inherited from HTML.

Text Indent and Line Height
The text-indent and line-height properties define respectively the inden-
tation of the first line and the spacing between adjacent lines. The follow-
ing example indents the element by 0.5 inch. It also defines the line height
as being 120% of the font size.
text-indent: 0.5in;

line-height: 120%;

text-ident accepts a percentage (relative to the parent’s element) or a
length. line-height defines the spacing between adjacent lines as normal,
as a length, as a percentage (relative to the font size), or as a number. If
the value is a number, the line height is equal to the font size times the
number.

177Text and Font Properties

E X A M P L E

E X A M P L E

E X A M P L E

08 2429 CH06 2.29.2000 2:22 PM Page 177

Font Shorthand
If you think there are too many font properties, you can group them all in
one with the font property. It has the following format:
font: italic bold 12pt/14pt Palatino, serif

The order is significant: font style, variant, weight, size, line height (sepa-
rated from the size by a “/”), and family names. The font weight and the
line height are optional.

Color and Background Properties
CSS has several properties to set the color of texts, boxes, borders, or back-
grounds.

Foreground Color
The simplest color property is the text foreground color. The color property
controls it. The following examples all set the text color to blue:
color: blue;

color: rgb(0,0,100%);

color: #0000FF;

Background Color
The background-color controls the color of the background. It accepts a
color value or the keyword transparent (what is behind a transparent back-
ground shines through). The following properties all set the background
color to white:
background-color: white;

background-color: rgb(0,0,0);

background-color: #000000;

Border Color
The color of the box border is controlled by the border-color property,
which accepts one or four colors as value. The four borders (top, right,
bottom, and left) can be set independently, like margins. The following
property draws an olive border:
border-color: olive;

Background Image
If you’re unhappy with a plain background, then use an image, for example,
a logo as background. background-image loads the image. It takes a URL as
value or none. The following example sets a background image:
background-image: url(logo.gif);

178 Chapter 6: XSL Formatting Objects and Cascading Style Sheet

E X A M P L E

E X A M P L E

E X A M P L E

E X A M P L E

08 2429 CH06 2.29.2000 2:22 PM Page 178

Unlike HTML, a background image can be applied to any element such as a
paragraph, a title, or any other element. Of course, if the element is the top
element, then the background applies to the whole document, like HTML.

Some Advanced Features
The properties we looked at in the last section are the most commonly used
ones. CSS has more advanced features and properties, most of which were
introduced by CSS2.

Listing 6.4 illustrates some of the advanced features. Figure 6.7 shows how
it looks with Mozilla, milestone 8. Mozilla supports more CSS2 properties
than Internet Explorer 5.0.
Listing 6.4: An Advanced Style Sheet

article

{

font-family: Palatino, Garamond, “Times New Roman”, serif;

font-size: 10pt;

margin: 5px;

}

article, p, section, title, copyright

{

display: block;

margin-bottom: 10px;

}

p

{

text-indent: 0.5in;

}

title + p

{

text-indent: 0in;

}

url

{

text-decoration: underline;

color: blue;

179Some Advanced Features

E X A M P L E

continues

08 2429 CH06 2.29.2000 2:22 PM Page 179

Listing 6.4: continued

}

url[protocol=’mailto’]

{

text-decoration: none;

}

article title

{

font-size: larger;

font-weight: bold;

}

section > title

{

font-style: italic;

}

copyright:before

{

content: “Copyright © “;

}

abstract, keywords, date

{

display: none;

}

Child Selector
CSS2 recognizes child selectors. A child selector points to an element that is
a direct descendant from another element. The following rule illustrates a
child select. The equivalent XSL is section/title.
section>title {

font-style: italic;

}

180 Chapter 6: XSL Formatting Objects and Cascading Style Sheet

E X A M P L E

08 2429 CH06 2.29.2000 2:22 PM Page 180

Figure 6.7: Showing an advanced style sheet in a browser

Sibling Selector
CSS2 also recognizes sibling selectors. A sibling selector points to an ele-
ment only if it immediately follows another element. The following example
states the first paragraph after a title has no indentation. Other para-
graphs have normal indentation.
title + p {

text-indent: 0in;

}

Attribute Selector
Like XSL paths, selectors can refer to the presence or the value of attrib-
utes. As the following example illustrates, the syntax is similar to XSL
paths although it does not use the @ character:
url[protocol=’mailto’] {

text-decoration: none;

}

181Some Advanced Features

E X A M P L E

E X A M P L E

08 2429 CH06 2.29.2000 2:22 PM Page 181

Attribute selectors were introduced in CSS1 and are supported by every
browser.

Creating Content
It is possible to create content with the content property. The following rule
inserts the text “Copyright © ” before the element:
copyright:before {

content: “Copyright © “;

}

Appending :before or :after to the selector places the text before or after
the element.

Importing Style Sheets
Finally, it is possible to import style sheets through the @import keyword.
Import takes a URL as value.
@import url(http://www.pineapplesoft.com/css/default.css);

Rules in the current style sheet take precedence over rules in the imported
style sheet.

T I P
The name cascading style sheet is derived from how rules cascade from one style sheet
to the other.

CSS and XML Editors
CSS is not only for browsers. XML editors can and, indeed, do use it. The
HTML editor is faced with a similar problem as the browser: It must adapt
to the DTD defined by the author.

Ideally, an XML editor should support the author. For one thing, it should
validate the document against its DTD. But it also should guide the author
by suggesting which elements are acceptable at any point.

The editor should be easy to use. Most users don’t care about the structure
of documents or markup or XML. They need to produce documents (articles,

182 Chapter 6: XSL Formatting Objects and Cascading Style Sheet

E X A M P L E

E X A M P L E

08 2429 CH06 2.29.2000 2:22 PM Page 182

invoices, and so on) and they want a tool that looks and behaves like a
word processor. The best editors also completely hide XML from the user.

There are three main classes of XML editors: text editors with syntax high-
lighting, tree-based editors, and pseudo-WYSIWYG editors.

Text Editor
A text editor is a programmer’s editor with XML syntax highlighting. XML
tags, attributes, and so on are painted in a different color so as to be easy to
separate the markup from the content of the document.

Figure 6.8 is eNotepad, a text editor with XML syntax highlighting.
Because text editors require intimate knowledge of XML, they are geared
toward programmers and knowledgeable users.

183CSS and XML Editors

E X A M P L E

Figure 6.8: eNotepad has syntax highlighting.

Tree-Based Editor
When judged by the number of products, tree-based editors are the most
popular XML editors. These tools use the XML tree as the centerpiece for
document editing.

Figure 6.9 is the XML Notepad from Microsoft. You can see the document
tree on the left side of the screen. Tools in this category are intended for
experienced users. They expose too much XML for end-users’ comfort.

E X A M P L E

08 2429 CH06 2.29.2000 2:22 PM Page 183

Figure 6.9: XML Notepad is a tree-based editor.

WYSIWYG Editors
WYSIWYG editors are geared toward end-users. They aim at making
XML completely transparent and they should be as easy to use as a word
processor.

However, tools in this category require customization. If you buy a tool in
this category, you should be thinking in terms of a toolkit that has to be
customized to your specific DTDs. Customization requires several steps:

• Prepare a DTD; with some editors it is necessary to compile the DTD
before using it.

• Associate a style sheet with the DTD so the editor can render docu-
ment onscreen in WYSIWYG mode.

• Make editors-specific customization such as create DTD-specific tool-
bars, and so on.

Some editors use their own style sheet language but the trend is toward
using CSS. It means the same style sheet used to edit the document can be
used to view it.

Figure 6.10 shows XMetaL, a pseudo-WYSIWYG editor. As you can see, it
looks (and feels) like a word processor customized for a DTD.

184 Chapter 6: XSL Formatting Objects and Cascading Style Sheet

E X A M P L E

08 2429 CH06 2.29.2000 2:22 PM Page 184

Figure 6.10: XMetaL, a WYSIWYG editor

XSLFO
CSS is a simple and efficient styling mechanism. However, it is limited to
styling a document, it cannot reorganize or otherwise process them. CSS
cannot build a table of contents or extract an index as XSLT.

XSLT and CSS
Nothing prevents you from combining XSLT with CSS. Listing 6.5 shows
how an XSLT style sheet can attach a CSS style sheet to a document and
create a table of contents in XML. Figure 6.11 shows the result in a
browser.
Listing 6.5: XSLT Style Sheet

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”>

<xsl:template match=”/”>

<xsl:processing-instruction name=”xml-stylesheet”>

href=”article.css” type=”text/css”

</xsl:processing-instruction>

<xsl:apply-templates/>

</xsl:template>

185XSLFO

E X A M P L E

continues

08 2429 CH06 2.29.2000 2:22 PM Page 185

Listing 6.5: continued

<xsl:template match=”keywords”>

<keywords><xsl:apply-templates/></keywords>

<section>

<title>Table of Contents</title>

<xsl:for-each select=”/article/section/title”>

<p><xsl:value-of select=”.”/></p>

</xsl:for-each>

</section>

</xsl:template>

<xsl:template match=”*”>

<xsl:copy><xsl:apply-templates/></xsl:copy>

</xsl:template>

</xsl:stylesheet>

186 Chapter 6: XSL Formatting Objects and Cascading Style Sheet

O U T P U T

Figure 6.11: The result in a browser

Figure 6.12 shows how it works. First, you apply an XSLT style sheet to the
document.

08 2429 CH06 2.29.2000 2:22 PM Page 186

✔ Refer to Chapter 5, “XSL Transformation,” for instructions on how to apply XSLT style

sheets with LotusXSL.

This XSLT style sheet creates an XML document, not an HTML document.
It reorganizes the document by creating a table of contents. The XSLT style
sheet also inserts a processing instruction that links the XML document to
a CSS style sheet.

The browser loads the XML document and the CSS style sheet to format it.
The major advantage of this solution, when compared to using XSLT to cre-
ate an HTML document, is that the final document is in XML. Therefore,
the final document still contains structure-rich markup.

187XSLFO

Figure 6.12: Combining XSLT and CSS

XSLFO
If using CSS in combination with XSLT makes sense, why not offer CSS
features in XSLT? This is the reasoning behind XSLFO. XSLFO essentially
ports the CSS properties to XSL.

Listing 6.6 is a simple XSLFO style sheet. Figure 6.13 shows the result in
InDelv, currently the only browser on the market to support XSLFO.
Listing 6.6: A Simple XSLFO Style Sheet

<?xml version=”1.0”?>

<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/TR/WD-xsl”

xmlns:fo=”http://www.w3.org/TR/WD-xsl/FO”>

<xsl:template match=”/”>

<fo:display-sequence

start-indent=”5pt”

end-indent=”5pt”

font-size=”10pt”

font-family=”serif”>

E X A M P L E

continues

08 2429 CH06 2.29.2000 2:22 PM Page 187

Listing 6.5: continued

<xsl:apply-templates/>

</fo:display-sequence>

</xsl:template>

<xsl:template match=”p”>

<fo:block>

<xsl:apply-templates/>

</fo:block>

</xsl:template>

<xsl:template match=”title”>

<fo:block

font-size=”13pt”

font-weight=”bold”>

<xsl:apply-templates/>

</fo:block>

</xsl:template>

<xsl:template match=”url”>

<fo:inline-link

destination=”text()”

color=”blue”>

<xsl:apply-templates/>

</fo:inline-link>

</xsl:template>

<xsl:template match=”date”/>

<xsl:template match=”keywords”/>

<xsl:template match=”abstract”/>

<xsl:template match=”copyright”/>

</xsl:stylesheet>

188 Chapter 6: XSL Formatting Objects and Cascading Style Sheet

08 2429 CH06 2.29.2000 2:22 PM Page 188

Figure 6.13: An XSLFO style sheet in a browser

An XSLFO style sheet is a list of XSL templates. The templates create for-
matting objects in the resulting tree. These formatting objects are equiva-
lent to CSS’ flow objects.

In Listing 6.6, you will recognize formatting objects for block boxes (for
example, fo:block) and inline boxes (for example, fo:inline-link). The
object properties are word for word taken from the CSS specification.

XLSFO also includes formatting objects specifically designed for XML; for
example, fo:inline-link creates a hyperlink. It has no equivalent in CSS.

This section is a very brief look at XSLFO because, at the time of this
writing, XSLFO has not achieved significant market acceptance. The
concepts, however, are very close to CSS.

What’s Next
Now that you know how to create and view XML documents, the next three
chapters will take you one step further and teach you how to manipulate
and create XML documents from a scripting or programming language.

189What's Next

O U T P U T

08 2429 CH06 2.29.2000 2:22 PM Page 189

09 2429 CH07 2.29.2000 2:22 PM Page 190

7

The Parser and DOM
The previous chapters showed how to view and transform XML documents.
Style sheet is a powerful technology but it is limited to viewing and trans-
forming. When you have more specific needs, you need to turn to program-
ming. This chapter introduces how to read XML documents from
JavaScript or Java.

In this chapter, you learn

• what an XML parser is

• how to interface a parser with an application

• what DOM, the Document Object Model, is

• how to write JavaScript applications that use DOM

• how to write Java applications that use DOM

• which other applications use DOM

What Is a Parser?
A parser is the most basic yet most important XML tool. Every XML appli-
cation is based on a parser.

A parser is a software component that sits between the application and the
XML files. Its goal is to shield the developer from the intricacies of the
XML syntax.

Parsers are confusing because they have received a lot of publicity: There
are dozens of parsers freely available on the Internet. When Microsoft
shipped Internet Explorer 4.0 as the first browser with XML support, they
bundled two XML parsers with it.

Yet, if you ask for a demo of a parser, you won’t see much. The parser is a
low-level tool that is almost invisible to everybody but programmers. The
confusion arises because the tool that has so much visibility in the market-
place turns out to be a very low-level device.

09 2429 CH07 2.29.2000 2:22 PM Page 191

Parsers
Why do you need parsers? Imagine you are given an XML file with product
descriptions, including prices. Your job is to write an application to convert
the dollar prices to Euros.

It looks like a simple assignment: Loop through the price list and multiply
each price by the exchange rate. Half a day’s work, including tests.

Remember the prices are in an XML file. To loop through the prices means
to read and interpret the XML syntax. It doesn’t look difficult—basically
elements are in angle brackets. Let’s say the half-day assignment is now a
one-day assignment.

Do you remember entities? The XML syntax is not just about angle brack-
ets. There might be entities in the price list. The application must read and
interpret the DTD to be able to resolve entities. While it’s reading the DTD,
it might as well read element definitions and validate the document.

✔ For more information on how the DTD influences the document, see the section

“Standalone Documents” in Chapter 3 (page 79).

What about other XML features: character encodings, namespaces, param-
eter entities? And did you consider errors? How does your software recover
from a missing closing tag?

The XML syntax is simple. Yet, it’s an extensible syntax so XML applica-
tions have to be ready to cope with many options. As it turns out, writing a
software library to read XML files is a one-month assignment. If you were
to write such a library, you would be writing your own parser.

Is it productive to spend one month writing a parser library when you need
only half a day’s work to process the data? Of course not.

That’s why developers download a parser from the Internet or use the one
that ships with the development tool. This is the common definition of a
parser: off-the-shelf components that isolate programmers from the
specifics of the XML syntax.

If you are not convinced yet and if you’d rather write your own XML parser,
consider this: No programmer in his/her right mind (except those working
for Oracle, Sybase, Informix, and the like) would write low-level database
drivers. It makes more sense to use the drivers that ship with the database.

Likewise, no programmer should spend time decoding XML files—it makes
more sense to turn to existing parsers.

192 Chapter 7: The Parser and DOM

09 2429 CH07 2.29.2000 2:22 PM Page 192

N O T E
The word parser comes from compilers. In a compiler, a parser is the module that
reads and interprets the programming language.

In a compiler, the parser creates a parse tree, which is an in-memory representation of
the source code.

The second half of the compiler, known as the backend, uses parse trees to generate
object files (compiled modules).

Validating and Nonvalidating Parsers
XML documents can be either well-formed or valid. Well-formed documents
respect the syntactic rules. Valid documents not only respect the syntactic
rules but also conform to a structure as described in a DTD.

Likewise, there are validating and nonvalidating parsers. Both parsers
enforce syntactic rules but only validating parsers know how to validate
documents against their DTDs.

Lest there be any confusion, there is no direct mapping between well-
formed and nonvalidating parsers. Nonvalidating parsers can read valid
documents but won’t validate them. To a nonvalidating parser, every docu-
ment is a well-formed document.

Similarly, a validating parser accepts well-formed documents. Of course,
when working on well-formed documents, it behaves as a nonvalidating
parser.

As a programmer, you will like the combination of validating parsers and
valid documents. The parser catches most of the structural errors for you.
And you don’t have to write a single line of code to benefit from the service:
The parser figures it out by reading the DTD. In short, it means less work
for you.

The Parser and the Application
This section shows you how to integrate the parser in your applications. It
discusses the various interfaces available to the programmer.

The Architecture of an XML Program
Figure 7.1 illustrates the architecture of XML programs. As you can see, it
is divided into two parts:

• The parser deals with the XML file.

• The application consumes the content of the file through the parser.

193The Parser and the Application

09 2429 CH07 2.29.2000 2:22 PM Page 193

Figure 7.1: Architecture of an XML program

Note that the application can be very simple (such as printing information
on the screen), or quite complex (such as a browser or an editor).

This chapter and the next one concentrate on the dotted line between the
two elements. This is the interface, or the communication path, between
the parser and the application.

The parser and the application must share a common model for XML data.
In practice, the common model is always some variation on a tree in mem-
ory that matches the tree in the XML document.

The parser reads the XML document and populates the tree in memory.
This tree built by the parser is an exact match of the tree in the XML docu-
ment. The application manipulates it as if it were the XML document. In
fact, for the application, it is the XML document.

Object-Based Interface
There are two basic ways to interface a parser with an application: using
object-based interfaces and using event-based interfaces. In practice, the
two approaches are more complementary than competitive.

Using an object-based interface, the parser explicitly builds a tree of objects
that contains all the elements in the XML document.

This is probably the most natural interface for the application because it is
handed a tree in memory that exactly matches the file on disk.

Obviously, it’s more convenient for the application to work with the tree in
memory, if only because it doesn’t have to worry about the XML syntax.
Furthermore, if using a validating parser, the tree may have been validated
against the DTD.

Listing 7.1 is a list of products, with their prices in U.S. dollars, presented
in an XML document. The structure for this document is shown in Figure
7.2.

194 Chapter 7: The Parser and DOM

E X A M P L E

09 2429 CH07 2.29.2000 2:22 PM Page 194

195The Parser and the Application

Figure 7.2: The structure of the price list

Listing 7.1: A Price List in XML

<?xml version=”1.0”?>

<products>

<product>

<name>XML Editor</name>

<price>499.00</price>

</product>

<product>

<name>DTD Editor</name>

<price>199.00</price>

</product>

<product>

<name>XML Book</name>

<price>19.99</price>

</product>

<product>

<name>XML Training</name>

<price>699.00</price>

</product>

</products>

The parser reads this document and gradually builds a tree of objects that
matches the document. Figure 7.3 illustrates how the tree is being built.

Figure 7.3: Building the tree of objects

09 2429 CH07 2.29.2000 2:23 PM Page 195

When the XML parser reads the document in Listing 7.1, it recognizes that
the top-level element is named products. Therefore, it constructs an object
to represent the products element.

The next element is a product. The parser creates another object to repre-
sent the product element. Because this is a tree, it attaches the product
object to the products object.

The next element is a name. Again, the parser creates an object for the name
and adds it to the tree being built.

In the name, there is some text that the parser translates in another object
in the tree.

After the name comes a price element, which also contains some text. The
parser adds two new objects to the tree.

It then moves to another product element, which also contains a name and
a price. This results in more objects in the tree.

The process continues until the document has been completely read. By the
time the parser reaches the end of the document, it has built a tree of
objects in memory that matches the tree of the document.

Event-Based Interface
The second approach to interfacing the parser and the application is
through events. An event-based interface is natural for the parser but it is
more complex for the application. Yet, with some practice, event-based
interfaces prove very powerful. More programmers (and more parsers) are
turning to event-based interfaces for this reason.

With an event-based interface, the parser does not explicitly build a tree of
objects. Instead, it reads the file and generates events as it finds elements,
attributes, or text in the file. There are events for element starts, element
ends, attributes, text content, entities, and so on. Figure 7.4 illustrates how
it works.

196 Chapter 7: The Parser and DOM

E X A M P L E

Figure 7.4: An event-based API

09 2429 CH07 2.29.2000 2:23 PM Page 196

At first sight, this solution is less natural for the application because it is
not given an explicit tree that matches the file. Instead, the application has
to listen to events and determine which tree is being described.

In practice, both forms of interfaces are helpful but they serve different
goals. Object-based interfaces are ideal for applications that manipulate
XML documents such as browsers, editors, XSL processors, and so on.

Event-based interfaces are geared toward applications that maintain their
own data structure in a non-XML format. For example, event-based inter-
faces are well adapted to applications that import XML documents in data-
bases. The format of the application is the database schema, not the XML
schema. These applications have their own data structure and they map
from an XML structure to their internal structure.

An event-based interface is also more efficient because it does not explicitly
build the XML tree in memory. Fewer objects are required and less memory
is being used.

✔ Chapter 8 discusses event-based interfaces in greater detail (“Alternative API: SAX,”

page 231).

The Need for Standards
Ideally, the interface between the parser and the application should be a
standard. A standard interface enables you to write software using one
parser and to deploy the software with another parser.

Again, there is a similarity with databases. Relational databases use SQL
as their standard interface. Because they all share the same interface,
developers can write software with one database and later move to another
database (for price reasons, availability, and so on) without changing the
application.

That’s the theory, at least. In practice, small differences, vendor extensions,
and other issues mean that moving from one vendor to another requires
more work than just recompiling the application. At the minimum, even if
they follow the same standards, vendors tend to introduce different bugs.

But even if different vendors are not 100-percent compatible with one
another, standards are a good thing.

For one thing, it is still easier to adapt an application from a vendor-tainted
version of the standard to another vendor-tainted version of the same stan-
dard than to port the application between vendors that use completely dif-
ferent interfaces.

197The Parser and the Application

09 2429 CH07 2.29.2000 2:23 PM Page 197

Furthermore, standards make it easier to learn new tools. It is easier to
learn a new interface when 90 percent of it is similar to the interface of
another product.

The two different approaches for interfaces translate into two different
standards. The standard for object-based interfaces is DOM, Document
Object Model, published by the W3C (www.w3.org/TR/REC-DOM-Level-1).

The standard for event-based interface is SAX, Simple API, developed col-
laboratively by the members of the XML-DEV mailing list and edited by
David Megginson (www.megginson.com/SAX).

The two standards are not really in opposition because they serve different
needs. Many parsers, such as IBM’s XML for Java and Sun’s ProjectX, sup-
port both interfaces.

This chapter concentrates on DOM. The next chapter discusses SAX.
Chapter 9, “Writing XML,” looks at how to create XML documents.

Document Object Model
Originally, the W3C developed DOM for browsers. DOM grew out of an
attempt to unify the object models of Netscape Navigator 3 and Internet
Explorer 3. The DOM recommendation supports both XML and HTML doc-
uments.

The current recommendation is DOM level 1. Level 1 means that it fully
specifies well-formed documents. DOM level 2 is under development and it
will support valid documents—that is, the DTDs.

DOM’s status as the official recommendation from the W3C means that
most parsers support it. DOM is also implemented in browsers, meaning
that you can write DOM applications with a browser and JavaScript.

As you can imagine, DOM has defined classes of objects to represent every
element in an XML file. There are objects for elements, attributes, entities,
text, and so on. Figure 7.5 shows the DOM hierarchy.

Getting Started with DOM
Let’s see, through examples, how to use a DOM parser. DOM is imple-
mented in a Web browser so these examples run in a browser. At the time
of this writing, Internet Explorer 5.0 is the only Web browser to support the
standard DOM for XML. Therefore, make sure you use Internet Explorer
5.0.

198 Chapter 7: The Parser and DOM

09 2429 CH07 2.29.2000 2:23 PM Page 198

Figure 7.5: The hierarchy in DOM

A DOM Application
Listing 7.2 is the HTML page for a JavaScript application to convert prices
from U.S. dollars to Euros. The price list is an XML document. The applica-
tion demonstrates how to use DOM.

A slightly modified version of this page (essentially, putting up a better
face) could be used on an electronic shop. International shoppers could
access product prices in their local currency.
Listing 7.2: Currency Conversion HTML Page

<HTML>

<HEAD>

<TITLE>Currency Conversion</TITLE>

<SCRIPT LANGUAGE=”JavaScript” SRC=”conversion.js”></SCRIPT>

</HEAD>

<BODY>

<CENTER>

<FORM ID=”controls”>

File: <INPUT TYPE=”TEXT” NAME=”fname” VALUE=”prices.xml”>

Rate: <INPUT TYPE=”TEXT” NAME=”rate” VALUE=”0.95274” SIZE=”4”>

<INPUT TYPE=”BUTTON” VALUE=”Convert”
ONCLICK=”convert(controls,xml)”>

<INPUT TYPE=”BUTTON” VALUE=”Clear” ONCLICK=”output.value=’’”>

<!-- make sure there is one character in the text area -->

<TEXTAREA NAME=”output” ROWS=”10” COLS=”50” READONLY> </TEXTAREA>

</FORM>

<xml id=”xml”></xml>

</CENTER>

199Getting Started with DOM

E X A M P L E

continues

09 2429 CH07 2.29.2000 2:23 PM Page 199

</BODY>

</HTML>

The conversion routine is written in JavaScript. The script is stored in
conversion.js, a JavaScript file that is loaded at the beginning of the
HTML file. Listing 7.3 is conversion.js.
<SCRIPT LANGUAGE=”JavaScript” SRC=”conversion.js”></SCRIPT>

Listing 7.3: Conversion.js, the JavaScript File to Convert Prices

function convert(form,xmldocument)

{

var fname = form.fname.value,

output = form.output,

rate = form.rate.value;

output.value = “”;

var document = parse(fname,xmldocument),

topLevel = document.documentElement;

searchPrice(topLevel,output,rate);

}

function parse(uri,xmldocument)

{

xmldocument.async = false;

xmldocument.load(uri);

if(xmldocument.parseError.errorCode != 0)

alert(xmldocument.parseError.reason);

return xmldocument;

}

function searchPrice(node,output,rate)

{

if(node.nodeType == 1)

{

if(node.nodeName == “price”)

output.value += (getText(node) * rate) + “\r”;

200 Chapter 7: The Parser and DOM

Listing 7.2: continued

09 2429 CH07 2.29.2000 2:23 PM Page 200

var children,

i;

children = node.childNodes;

for(i = 0;i < children.length;i++)

searchPrice(children.item(i),output,rate);

}

}

function getText(node)

{

return node.firstChild.data;

}

Figure 7.6 shows the result in the browser. Be sure you copy the three files
from Listings 7.1 (prices.xml), 7.2 (conversion.html), and 7.3 (conversion.js)
in the same directory.

201Getting Started with DOM

Listing 7.2: continued

O U T P U T

Figure 7.6: Running the script in a browser

The page defines a form with two fields: fname, the price list in XML, and
rate, the exchange rate (you can find the current exchange rate on any
financial Web site):

09 2429 CH07 2.29.2000 2:23 PM Page 201

File: <INPUT TYPE=”TEXT” NAME=”fname” VALUE=”prices.xml”>

Rate: <INPUT TYPE=”TEXT” NAME=”rate” VALUE=”0.95274” SIZE=”4”>

It also defines a read-only text area that serves as output:
<TEXTAREA NAME=”output” ROWS=”10” COLS=”50” READONLY> </TEXTAREA>

Finally, it defines an XML island. XML islands are mechanisms used to
insert XML in HTML documents. In this case, XML islands are used to
access Internet Explorer’s XML parser. The price list is loaded into the
island.

Note that XML island is specific to Internet Explorer 5.0. It would not work
with another browser. We will see why we have to use browser-specific code
in a moment.
<xml id=”xml”></xml>

The “Convert” button in the HTML file calls the JavaScript function
convert(), which is the conversion routine. convert() accepts two param-
eters, the form and the XML island:
<INPUT TYPE=”BUTTON” VALUE=”Convert” ONCLICK=”convert(controls,xml)”>

The script retrieves the filename and exchange rate from the form. It com-
municates with the XML parser through the XML island.

DOM Node
The core object in DOM is the Node. Nodes are generic objects in the tree
and most DOM objects are derived from nodes. There are specialized ver-
sions of nodes for elements, attributes, entities, text, and so on.

Node defines several properties to help you walk through the tree:

• nodeType is a code representing the type of the object; the list of code
is in Table 7.1.

• parentNode is the parent (if any) of current Node object.

• childNode is the list of children for the current Node object.

• firstChild is the Node’s first child.

• lastChild is the Node’s last child.

• previousSibling is the Node immediately preceding the current one.

• nextSibling is the Node immediately following the current one.

• attributes is the list of attributes, if the current Node has any.

In addition, Node defines two properties to manipulate the underlying
object:

202 Chapter 7: The Parser and DOM

09 2429 CH07 2.29.2000 2:23 PM Page 202

• nodeName is the name of the Node (for an element, it’s the tag name).

• nodeValue is the value of the Node (for a text node, it’s the text).

Table 7.1: nodeType code

Type Code
Element 1

Attribute 2

Text 3

CDATA section 4

Entity reference 5

Entity 6

Processing instruction 7

Comment 8

Document 9

Document type 10

Document fragment 11

Notation 12

In the example, the function searchPrice() tests whether the current node
is an element:
if(node.nodeType == 1)

{

if(node.nodeName == “price”)

output.value += (getText(node) * rate) + “\r”;

var children,

i;

children = node.childNodes;

for(i = 0;i < children.length;i++)

searchPrice(children.item(i),output,rate);

}

Document Object
The topmost element in a DOM tree is Document. Document inherits from
Node so it can be inserted in a tree. Document inherits most properties from
Node and adds only two new properties:

203Getting Started with DOM

E X A M P L E

09 2429 CH07 2.29.2000 2:23 PM Page 203

• documentElement is the topmost element in the document.

• doctype is the Document Type. DOM level 1 does not fully specify the
document type. This will be done in DOM level 2.

Document is similar to the root in XSL path. It’s an object one step before
the topmost element.

To return a tree, the parser returns a Document object. From the Document
object, it is possible to access the complete document tree.

C A U T I O N
Unfortunately, the DOM recommendation starts with the Document object, not with the
parser itself. For the time being, there is no standard mechanism to access the parser.
It is advisable to clearly isolate the call to the parser from the rest of the code.

The parse() function loads the price list in the XML island and returns
its Document object. Most of the code in this function is Internet Explorer-
specific because the DOM specification starts only at the Document object.
function parse(uri,xmldocument)

{

xmldocument.async = false;

xmldocument.load(uri);

if(xmldocument.parseError.errorCode != 0)

alert(xmldocument.parseError.reason);

return xmldocument;

}

The function first sets the async property to false. async is specific to
Internet Explorer 5.0—it enables or disables background download. Next,
it calls load(), which is also specific to Internet Explorer 5.0. As the name
implies, load() loads the document.

Finally, it checks for errors while parsing. The parseError property holds
information about parsing errors.

Walking the Element Tree
To extract information or otherwise manipulate the document, the applica-
tion walks the tree. You have already seen this happening with the XSL
processor.

Essentially, you write an application that visits each element in the tree.
This is easy with a recursive algorithm. To visit a node:

204 Chapter 7: The Parser and DOM

E X A M P L E

09 2429 CH07 2.29.2000 2:23 PM Page 204

• Do any node-specific processing, such as printing data.

• Visit all its children.

Given children are nodes, to visit them means visiting their children, and
the children of their children, and so on.

The function searchPrice() illustrates this process. It visits each node by
recursively calling itself for all children of the current node. This is a deep-
first search—as you saw with the XSL processor. Figure 7.7 illustrates how
it works.
function searchPrice(node,output,rate)

{

if(node.nodeType == 1)

{

if(node.nodeName == “price”)

output.value += (getText(node) * rate) + “\r”;

var children,

i;

children = node.childNodes;

for(i = 0;i < children.length;i++)

searchPrice(children.item(i),output,rate);

}

}

205Getting Started with DOM

E X A M P L E

Figure 7.7: Walking down the tree

There is a major simplification in searchPrice(): the function examines
nodes only of type Element. This is logical given that the function is looking
for price elements so there is no point in examining other types of nodes

09 2429 CH07 2.29.2000 2:23 PM Page 205

such as text or entities. As you will see, more complex applications have to
examine all the nodes.

At each step, the function tests whether the current node is a price. For
each price element, it computes the price in Euros and prints it.

Next, the function turns to the node’s children. It loops through all the chil-
dren and recursively calls itself for each child.

To walk through the node’s children, the function accesses the childNodes
property. childNodes contains a NodeList. NodeList is a DOM object that
contains a list of Node objects. It has two properties:

• length, the number of nodes in the list.

• item(i), a method to access node i in the list.

Element Object
Element is the descendant of Node that is used specifically to represent XML
elements. In addition to the properties inherited from Node, Element defines
the tagName property for its tag name.

Element also defines specific methods (there are more methods but the
other methods will be introduced in Chapter 9, “Writing XML”):

• getElementsByTagName() returns a NodeList of all descendants of the
element with a given tag name.

• normalize() reorganizes the text nodes below the element so that they
are separated only by markup.

Text Object
1. The function getText() returns the text of the current node. It

assumes that node is an element.
function getText(node)

{

return node.firstChild.data;

}

This is a simplification; the function assumes there is only one text object
below the element. It is true in the example but it is not correct for arbi-
trary documents. The following <p> element contains two text objects and
one element object ().
<p>The element can contain text and other elements such as images
➥ or other.</p>

206 Chapter 7: The Parser and DOM

E X A M P L E

09 2429 CH07 2.29.2000 2:23 PM Page 206

The element object splits the text into two text objects:

• the text before the element “The element can contain text and
other elements such as images”

• and the text after “or other.”

2. In general, to retrieve the text of an element, it is safer to iterate over
the element’s children. Fortunately, because getText() is isolated in a
separate function, it’s easy to replace:

function getText(node)

{

if(node.nodeType == 1)

{

var text = “”,

children = node.childNodes,

i;

for(i = 0;i < children.length;i++)

if(children.item(i).nodeType == 3)

text += children.item(i).data;

return text

}

else

return “”;

}

Managing the State
The previous example is very simple. The script walks through the tree
looking for a specific element. At each step, the script considers only the
current node.

In many cases, the processing is more complicated. Specifically, it is com-
mon to collect information from several elements or to process elements
only if they are children of other elements.

With XSL, you could write paths such as section/title and combine infor-
mation from several elements with xsl:value-of.

To do the same thing with DOM, the script must maintain state informa-
tion. In other words, as it examines a node, the script must remember
where it’s coming from or what children it is expecting.

207Managing the State

E X A M P L E

09 2429 CH07 2.29.2000 2:23 PM Page 207

A DOM Application That Maintains the State
As Listing 7.4 illustrates, this is very easy to do with special functions.
Listing 7.4 is another version of conversion.js that prints the name of the
product next to the converted price. The script does not only look for prices,
but also for the combination of a price and a name. Figure 7.8 shows the
result in a browser.
Listing 7.4: Walking Down the Tree While Retaining State Information

function convert(form,xmldocument)

{

var fname = form.fname.value,

output = form.output,

rate = form.rate.value;

output.value = “”;

var document = parse(fname,xmldocument),

topLevel = document.documentElement;

walkNode(topLevel,output,rate)

}

function parse(uri,xmldocument)

{

xmldocument.async = false;

xmldocument.load(uri);

if(xmldocument.parseError.errorCode != 0)

alert(xmldocument.parseError.reason);

return xmldocument;

}

function walkNode(node,output,rate)

{

if(node.nodeType == 1)

{

if(node.nodeName == “product”)

walkProduct(node,output,rate);

else

{

208 Chapter 7: The Parser and DOM

E X A M P L E

09 2429 CH07 2.29.2000 2:23 PM Page 208

var children,

i;

children = node.childNodes;

for(i = 0;i < children.length;i++)

walkNode(children.item(i),output,rate);

}

}

}

function walkProduct(node,output,rate)

{

if(node.nodeType == 1 && node.nodeName == “product”)

{

var name,

price,

children,

i;

children = node.childNodes;

for(i = 0;i < children.length;i++)

{

var child = children.item(i);

if(child.nodeType == 1)

{

if(child.nodeName == “price”)

price = getText(child) * rate;

else if(child.nodeName == “name”)

name = getText(child);

}

}

output.value += name + “: “ + price + “\r”;

}

}

function getText(node)

{

return node.firstChild.data;

}

209Managing the State

09 2429 CH07 2.29.2000 2:23 PM Page 209

Figure 7.8: Running the conversion utility

You recognize many elements from the previous listing. The novelty is in
functions walkNode() and walkProduct().

walkNode() is very similar to searchPrice(). It walks down the tree looking
for product elements. When it finds a product, it calls walkProduct().

walkProduct() is a specialized function that processes only product ele-
ments. However, by virtue of being specialized, it knows that a product ele-
ment contains a name element and a price element. It therefore extracts
information from both the name and the price elements. This function
maintains state information: It knows it is in a product element and it
expects the product to contain specific elements.

Attributes
The previous two sections were interested only in elements. This section
shows how to access attributes as well. Attributes are a very important part
of XML documents.

Listing 7.5 is a different price list. This time, prices are expressed in sev-
eral currencies (U.S. dollars, Canadian dollars, and Belgian francs). The
currency attribute, attached to the price element, identifies the currency.

210 Chapter 7: The Parser and DOM

O U T P U T

E X A M P L E

09 2429 CH07 2.29.2000 2:23 PM Page 210

Listing 7.5: Price List in Different Currencies

<?xml version=”1.0”?>

<products>

<product>

<name>XML Editor</name>

<price currency=”usd”>499.00</price>

</product>

<product>

<name>DTD Editor</name>

<price currency=”cad”>299.00</price>

</product>

<product>

<name>XML Book</name>

<price currency=”usd”>19.99</price>

</product>

<product>

<name>XML Training</name>

<price currency=”bef”>28000</price>

</product>

</products>

Because the prices are expressed in different currencies, exchange rates
vary. Listing 7.6 is an XML file that lists the exchange rates for each cur-
rency. The structure of this document is shown in Figure 7.9.
Listing 7.6: Exchange Rates in XML

<?xml version=”1.0”?>

<rates>

<rate currency=”bef” rate=”0.02479”/>

<rate currency=”usd” rate=”0.95274”/>

<rate currency=”cad” rate=”0.63211”/>

</rates>

Listing 7.7 is an HTML file for a more sophisticated version of the price
conversion utility. Now the exchange rates are read from an XML file
instead of a field on the form. Also, the file uses attributes to recognize the
price currency.

211Attributes

09 2429 CH07 2.29.2000 2:23 PM Page 211

Figure 7.9: The structure of the exchange rate file

To run the application, keep in mind it is split among four files:

• an HTML file that defines the interface

• an XML file with the exchange rates

• an XML file with products and prices

• a JavaScript file that does the conversions

Listing 7.7: The New Conversion Utility

<HTML>

<HEAD>

<TITLE>Currency Conversion</TITLE>

<SCRIPT LANGUAGE=”JavaScript” SRC=”conversion.js”></SCRIPT>

</HEAD>

<BODY>

<CENTER>

<FORM ID=”controls”>

Prices: <INPUT TYPE=”TEXT” NAME=”prices” VALUE=”prices.xml”>

Rate: <INPUT TYPE=”TEXT” NAME=”rates” VALUE=”rates.xml”>

<INPUT TYPE=”BUTTON” VALUE=”Convert”
ONCLICK=”convert(controls,xml)”>

<INPUT TYPE=”BUTTON” VALUE=”Clear” ONCLICK=”output.value=’’”>

<!-- make sure there is one character in the text area -->

<TEXTAREA NAME=”output” ROWS=”10” COLS=”50” READONLY> </TEXTAREA>

</FORM>

<xml id=”xml”></xml>

</CENTER>

</BODY>

</HTML>

Listing 7.8 is conversion.js, the JavaScript file that does the actual work.
Figure 7.10 shows the result in a browser.
Listing 7.8: Converting with Attributes

// currency code

var BEF = 0, // Belgian franc

USD = 1, // US dollars

CAD = 2; // Canadian dollars

212 Chapter 7: The Parser and DOM

09 2429 CH07 2.29.2000 2:23 PM Page 212

// returns the code associated with a currency string

function getCurrencyCode(currency)

{

if(currency == “bef”)

return BEF;

else if(currency == “usd”)

return USD;

else if(currency == “cad”)

return CAD;

else

return -1;

}

function convert(form,xmldocument)

{

var pricesfname = form.prices.value,

ratesfname = form.rates.value;

output = form.output,

rates = new Array(3);

output.value = “”;

var document = parse(ratesfname,xmldocument),

topLevel = document.documentElement;

searchRate(topLevel,rates);

document = parse(pricesfname,xmldocument);

topLevel = document.documentElement;

walkNode(topLevel,output,rates);

}

function parse(uri,xmldocument)

{

xmldocument.async = false;

xmldocument.load(uri);

213Attributes

continues

09 2429 CH07 2.29.2000 2:23 PM Page 213

if(xmldocument.parseError.errorCode != 0)

alert(xmldocument.parseError.reason);

return xmldocument;

}

function searchRate(node,rates)

{

if(node.nodeType == 1)

{

if(node.nodeName == “rate”)

walkRate(node,rates)

var children,

i;

children = node.childNodes;

for(i = 0;i < children.length;i++)

searchRate(children.item(i),rates);

}

}

function walkRate(node,rates)

{

if(node.attributes != null)

{

var attr = node.attributes.getNamedItem(“currency”);

var currency = getCurrencyCode(attr.value),

rate = node.attributes.getNamedItem(“rate”);

if(currency != -1)

rates[currency] = rate.value;

}

}

function walkNode(node,output,rates)

{

if(node.nodeType == 1)

{

if(node.nodeName == “product”)

214 Chapter 7: The Parser and DOM

Listing 7.8: continued

09 2429 CH07 2.29.2000 2:23 PM Page 214

walkProduct(node,output,rates);

else

{

var children,

i;

children = node.childNodes;

for(i = 0;i < children.length;i++)

walkNode(children.item(i),output,rates);

}

}

}

function walkProduct(node,output,rates)

{

if(node.nodeType == 1 && node.nodeName == “product”)

{

var price,

name,

children,

i;

children = node.childNodes;

for(i = 0;i < children.length;i++)

{

var child = children.item(i);

if(child.nodeType == 1)

{

if(child.nodeName == “price”)

price = walkPrice(child,rates);

else if(child.nodeName == “name”)

name = getText(child);

}

}

output.value += name + “: “ + price + “\r”;

}

}

function walkPrice(node,rates)

215Attributes

continues

09 2429 CH07 2.29.2000 2:23 PM Page 215

{

if(node.attributes != null)

{

var attr = node.attributes.getNamedItem(“currency”),

currency = getCurrencyCode(attr.value);

if(currency != -1)

return getText(node) * rates[currency];

}

}

function getText(node)

{

return node.firstChild.data;

}

216 Chapter 7: The Parser and DOM

Listing 7.8: continued

Figure 7.10: Advanced conversion utility

Most of the code in Listing 7.8 should be familiar. convert() parses two
XML files: the price list and the rate list. It starts with the rate list. This is
a simple walk down the DOM tree. It is very similar to the first example.
Indeed, rates are self-contained objects so there is little need to retain
state.

O U T P U T

09 2429 CH07 2.29.2000 2:23 PM Page 216

After it has collected the exchange rates, the application loads the price list
and converts the prices. To do this, it needs to retain state information as it
walks down the tree. Again, this is not new and it has been covered in the
previous section.

C A U T I O N
This application does little error checking. Specifically it does not check whether the
currency really exists. Also the currency code must be written in lowercase.

NamedNodeMap
Manipulating the attributes is done in the walkRate() function. Element
objects have an attributes property. The attributes property is a
NamedNodeMap object.

A NamedNodeMap is a list of nodes with a name attached to them. It supports
the same properties and methods as NodeList—length and item(i)—but it
also has special methods to access nodes by name:

• getNamedItem()returns the node with the given name.

• setNamedItem()sets the node with the given name.

• removeNamedItem()sremoves the node with the given name.

walkRate() illustrates how to use getNamedItem() to retrieve the currency
attribute.
function walkRate(node,rates)

{

if(node.attributes != null)

{

var attr = node.attributes.getNamedItem(“currency”);

var currency = getCurrencyCode(attr.value),

rate = node.attributes.getNamedItem(“rate”);

if(currency != -1)

rates[currency] = rate.value;

}

}

Attr
Attr objects represent the attributes. Attr is a Node descendant. In addition
to the properties it inherits from Node, Attr defines the following properties:

• name is the name of the attribute.

• value is the value of the attribute.

217Attributes

E X A M P L E

09 2429 CH07 2.29.2000 2:23 PM Page 217

• specified is true if the attribute was given a value in the document; it
is false if the attribute has taken a default value from the DTD.

T I P
The W3C decided to call the attribute object Attr to avoid confusion with object proper-
ties. In some languages, object properties are called object attributes. An Attribute
object would have been very confusing.

A Note on Structure
If you compare Listing 7.5 and Listing 7.6, it appears that the structure of
the two listings are different. The price listing has many elements and a
hierarchy that goes three levels deep. Attributes convey meta-information
(for example, information about the format of the data) only.

The rate listing has fewer elements. Data, and not meta-data, is stored in
attributes.

✔ As you will see in Chapter 10 (“Modeling for Flexibility,” page 307), there is raging debate

between the element and the attribute supporters. In practice, applications often have to

manipulate both types of files.

Listing 7.8 is interesting because it demonstrates walking the two docu-
ments side-by-side. As you can see, walking the rate listing is easier
because there is no need to maintain state information. You will revisit this
issue in Chapter 10.

T I P
One of the main reasons people place data in attributes is to avoid having to maintain
state when walking down an XML file.

Common Errors and How to Solve Them
In this chapter, you have learned how to use XML parsers, particularly
DOM parsers from JavaScript. A discussion of parsers would not be com-
plete without a discussion of common parsing errors and how to solve them.

This section deals with debugging XML documents when the parser reports
an error.

XML Parsers Are Strict
When debugging XML documents, it is important to remember that XML
parsers are strict. They complain for errors that an HTML browser would
silently ignore.

218 Chapter 7: The Parser and DOM

09 2429 CH07 2.29.2000 2:23 PM Page 218

This was a design goal for the development of XML. It was decided that
HTML had grown too difficult to implement because the browsers were too
lenient. According to some estimate, more than 50 percent of the code in a
browser deals with correcting errors.

That’s a huge burden on the browser developers and it might explain why
competition in the browser space is limited.

Furthermore, XML has been designed with a wide range of computing plat-
forms in mind. This includes full-blown desktop but it also includes smaller
devices (portable phones, PDAs like the PalmPilot, and so on). These
devices lack the memory and power to recover from complex errors.

To minimize the risk of errors in XML documents, I suggest you adopt a
validating XML editor. Such an editor validates your code as you write.
Depending on the options, the validating editor might or might not enforce
a DTD but it always enforces the XML syntax.

Error Messages
Parsers produce error messages that are often confusing. XML parsers are
written with compiler technology. Consequently, error messages are similar
to what you should expect from a compiler: helpful, but they rarely find the
real error. Again, an XML editor might help. The best XML editors provide
extra guidance about errors, which makes it easier to fix them.

1. In the best case, the error message points to the problem. For exam-
ple, given the following fragment:

<p>Send comments and suggestions to <url protocol=”mailto”>

➥bmarchal@pineapplesoft.com.</p>

The parser generates an error message similar to this (the exact message
depends on your parser):
</url> expected

And it is right. The fragment misses an </url> closing tag.

2. Unfortunately, the error message can be very confusing. Given the fol-
lowing fragment

<p>Send comments and suggestions to <url protocol=”mailto>

➥bmarchal@pineapplesoft.com.</url></p>

the parser generates two error messages:
attribute value must not contain ‘<’

“</p>” expected

219Common Errors and How to Solve Them

E X A M P L E

O U T P U T

E X A M P L E

O U T P U T

09 2429 CH07 2.29.2000 2:23 PM Page 219

However, these error messages are incorrect. The real problem is that the
attribute has no closing quote. The correct message should have been
“ expected.

Instead, the parser thinks that the attribute continues until the end of the
line. When it reaches the end of the line, the parser is confused and it
misses the p closing tag.

As you can see, it’s important to take error messages with a pinch of salt.

XSLT Common Errors
When writing XSLT style sheets, it is very common to forget to close HTML
elements. However, in XML, a P element must have an opening and a clos-
ing tag.

The following line is guaranteed to confuse the parser:
<xsl:template match=”p”>

<P><xsl:apply-templates/>

</xsl:template>

Fortunately, the error message (“</P>” expected) is clear.

Similarly,
 is an empty tag. In XML, empty tags have the format

. Again, the error message (“</BR>” expected) is useful to pinpoint
the problem.

DOM and Java
DOM is not limited to browsers. Nor is it limited to JavaScript. DOM is a
multiplatform, multilanguage interface.

DOM and IDL
There are versions of DOM for JavaScript, Java, and C++. In fact, there are
versions of DOM for most languages because the W3C adopted a clever
trick: It specified DOM using the OMG IDL.

The OMG IDL is a specification language for object interfaces. It is used to
describe not what an object does but which methods and which properties it
has. IDL, which stands for Interface Definition Language, was published by
the OMG, the Object Management Group.

The good thing about IDL is that it has been mapped to many object-
oriented programming languages. There are mappings of IDL for Java,
C++, Smalltalk, Ada, and even Cobol. By writing the DOM recommendation
in IDL, the W3C benefits from this cross-language support. Essentially,
DOM is available in all these languages.

220 Chapter 7: The Parser and DOM

E X A M P L E

09 2429 CH07 2.29.2000 2:23 PM Page 220

C A U T I O N
The fact that DOM is specified in IDL does not mean that parsers must be imple-
mented as CORBA objects. In fact, to the best of my knowledge, there are no XML
parsers implemented as CORBA objects. The W3C used only the multilanguage aspect
of IDL and left out all the distribution aspects.

Java, like JavaScript, is a privileged language for XML development. In
fact, most XML tools are written in Java and/or have a Java version.
Indeed, there are probably more Java parsers than parsers written in all
other languages. Most of these parsers support the DOM interface.

If you don’t write Java software, feel free to skip this section.

✔ If you would like to learn how to write Java software for XML, read Appendix A, “Crash

Course on Java,” page 457.

A Java Version of the DOM Application
Listing 7.9 is the conversion utility in Java. As you can see, it uses the
same objects as the JavaScript listing. The objects have the same properties
and methods. That’s because it’s the same DOM underneath.
Listing 7.9: The Conversion Utility in Java

import org.w3c.dom.*;

import com.ibm.xml.parsers.*;

import com.ibm.xml.framework.*;

public class Conversion

{

public static void main(String[] args)

throws Exception

{

if(args.length < 2)

{

System.out.println(“java Conversion filename rate”);

return;

}

double rate = Double.valueOf(args[1]).doubleValue();

Document document = parse(args[0]);

Element topLevel = document.getDocumentElement();

walkNode(topLevel,rate);

}

221DOM and Java

E X A M P L E

continues

09 2429 CH07 2.29.2000 2:23 PM Page 221

protected static Document parse(String uri)

throws Exception

{

NonValidatingDOMParser parser =

new NonValidatingDOMParser();

parser.parse(uri);

return parser.getDocument();

}

protected static void walkNode(Node node,double rate)

{

if(node.getNodeType() == Node.ELEMENT_NODE)

{

if(node.getNodeName().equals(“product”))

walkProduct((Element)node,rate);

else

{

NodeList children = node.getChildNodes();

for(int i = 0;i < children.getLength();i++)

walkNode(children.item(i),rate);

}

}

}

protected static void walkProduct(Element element,double rate)

{

if(element.getNodeName().equals(“product”))

{

String name = null;

double price = 0.0;

NodeList children = element.getChildNodes();

for(int i = 0;i < children.getLength();i++)

{

Node child = children.item(i);

if(child.getNodeType() == Node.ELEMENT_NODE)

{

222 Chapter 7: The Parser and DOM

Listing 7.9: continued

09 2429 CH07 2.29.2000 2:23 PM Page 222

if(child.getNodeName().equals(“price”))

{

String st = getText(child);

price = Double.valueOf(st).doubleValue();

price *= rate;

}

else if(child.getNodeName().equals(“name”))

name = getText(child);

}

}

System.out.println(name + “: “ + price);

}

}

protected static String getText(Node node)

{

Node child = node.getFirstChild();

if(child != null && child.getNodeType() == Node.TEXT_NODE)

{

Text text = (Text)child;

return text.getData();

}

else

return null;

}

}

Two Major Differences
1. The major difference between the Java and the JavaScript versions

is that Java properties have the form getPropertyName().

Therefore, the following JavaScript code
if(node.nodeName == “product”)

is slightly different in Java:
if(element.getNodeName().equals(“product”))

223DOM and Java

E X A M P L E

09 2429 CH07 2.29.2000 2:23 PM Page 223

2. The other difference is that Java is a strongly typed language.
Typecasting between Node and Node descendants is very frequent, such
as in the getText() method. In JavaScript, the typecasting was
implicit.

protected static String getText(Node node)

{

Node child = node.getFirstChild();

if(child != null && child.getNodeType() == Node.TEXT_NODE)

{

Text text = (Text)child; // typecasting from Node to Text

return text.getData();

}

else

return null;

}

The Parser
Listing 7.10 was written using the IBM parser for Java available from
www.alphaworks.ibm.com. The IBM parser is popular because it was one of
the first Java parsers to support both DOM and SAX (the event-based
interface).

As always, updated instructions will be posted on the Macmillan Web site
at www.mcp.com. Don’t forget to visit Macmillan if you have a problem with
XML for Java.

Other Java parsers are available from Microsoft (www.microsoft.com) and
Oracle (www.oracle.com), as well as Sun (java.sun.com). The Sun parser is
known as ProjectX.

You will remember that the DOM recommendation starts with the Document
object. There is no standard on how to call the parser. Consequently, it is
best to isolate this nonportable code in a separate function.

In the example, the parse() method isolates nonportable aspects:
protected static Document parse(String uri)

throws Exception

{

NonValidatingDOMParser parser = new NonValidatingDOMParser();

parser.parse(uri);

return parser.getDocument();

}

224 Chapter 7: The Parser and DOM

E X A M P L E

E X A M P L E

09 2429 CH07 2.29.2000 2:23 PM Page 224

If you are using a different parser (such as a Microsoft parser), you will
have to adapt this method.

In this particular case, the method creates a nonvalidating parser. IBM
ships both validating and nonvalidating parsers.

DOM in Applications
Many applications, which you wouldn’t think of as parsers, also rely on the
DOM interface.

Browsers
Obviously, the browser uses the DOM interface everywhere. DOM is not
limited to an XML island; any document loaded in a browser is accessible
through DOM.

Listings 7.11, 7.12, 7.13, and 7.14 show yet another version of the conver-
sion utility. This version loads the XML document in one frame (so it’s not
an XML island; it’s an XML document loaded in the browser) and loads the
bulk of the utility in another frame.

Listing 7.11 shows the HTML file that creates the frames.
Listing 7.11: An HTML File to Create the Frames

<HTML>

<HEAD>

<TITLE>Currency Conversion</TITLE>

</HEAD>

<FRAMESET COLS=”40%,60%”>

<FRAME SRC=”conversion.html” NAME=”conversion”>

<FRAME SRC=”prices.xml” NAME=”xml”>

</FRAMESET>

</HTML>

Listing 7.12 is conversion.html, the file that implements the conversion
utility.
Listing 7.12: The Conversion Utility

<HTML>

<HEAD>

<TITLE>Conversion</TITLE>

<SCRIPT LANGUAGE=”JavaScript”>

function convert(form,xmldocument)

{

var output = form.output,

225DOM in Applications

E X A M P L E

continues

09 2429 CH07 2.29.2000 2:23 PM Page 225

rate = form.rate.value;

output.value = “”;

var topLevel = xmldocument.documentElement;

searchPrice(topLevel,output,rate)

}

function searchPrice(node,output,rate)

{

if(node.nodeType == 1)

{

if(node.nodeName == “price”)

output.value += (getText(node) * rate) + “\r”;

var children,

i;

children = node.childNodes;

for(i = 0;i < children.length;i++)

searchPrice(children.item(i),output,rate);

}

}

function getText(node)

{

if(node.nodeType == 1)

{

var text = “”,

children = node.childNodes,

i;

for(i = 0;i < children.length;i++)

if(children.item(i).nodeType == 3)

text += children.item(i).data;

return text

}

else

return “”;

}

226 Chapter 7: The Parser and DOM

Listing 7.12: continued

09 2429 CH07 2.29.2000 2:23 PM Page 226

</SCRIPT>

</HEAD>

<BODY>

<CENTER>

<FORM ID=”controls”>

Rate: <INPUT TYPE=”TEXT” NAME=”rate” VALUE=”0.95274”

SIZE=”4”>

<INPUT TYPE=”BUTTON”

ONCLICK=”convert(controls,parent.xml.document)”

VALUE=”Convert”>

<INPUT TYPE=”BUTTON” VALUE=”Clear”

ONCLICK=”output.value=’’”>

<!-- there must be one character in the text area -->

<TEXTAREA NAME=”output” ROWS=”10” COLS=”30” READONLY>

</TEXTAREA>

</FORM>

</CENTER>

</BODY>

</HTML>

Listing 7.13 is prices.xml, the price list in XML. It is identical to Listing 7.1
except that it applies a CSS style sheet.
Listing 7.13: The Price List with a CSS Style Sheet

<?xml version=”1.0”?>

<?xml-stylesheet href=”prices.css” type=”text/css”?>

<products>

<product>

<name>XML Editor</name>

<price>499.00</price>

</product>

<product>

<name>DTD Editor</name>

<price>199.00</price>

</product>

<product>

<name>XML Book</name>

<price>19.99</price>

227DOM in Applications

continues

09 2429 CH07 2.29.2000 2:23 PM Page 227

</product>

<product>

<name>XML Training</name>

<price>699.00</price>

</product>

</products>

Listing 7.14 is prices.css, the CSS style sheet. Figure 7.11 shows the result
in a browser.
Listing 7.14: The CSS Style Sheet

product

{

display: block;

font-family: Palatino, Garamond, “Times New Roman”, serif;

}

name

{

font-weight: bold;

}

228 Chapter 7: The Parser and DOM

Listing 7.13: continued

Figure 7.11: The result in a browser

O U T P U T

09 2429 CH07 2.29.2000 2:23 PM Page 228

The code is familiar; for the most part it’s copied verbatim from Listing 7.3.
Note, however, that it does not explicitly parse the document (there is no
parse() function). Instead, the content of the XML frame is accessed
directly through the DOM interface.
<INPUT TYPE=”BUTTON”

ONCLICK=”convert(controls,parent.xml.document)”

VALUE=”Convert”>

Editors
XML editors also use DOM. For example, XMetaL from SoftQuad exposes
the current document through DOM.

For example, macros can access the document to create tables of contents,
indeXEs, and so on. Using macros and DOM, you can customize the editor
to suit your needs.

Databases
An XML database stores XML documents in binary format. It is therefore
faster to load and manipulate documents.

The database exposes its documents to applications using DOM. The appli-
cation does not even know it is working against a database. Through DOM,
it makes no difference whether the document is in a database or in an XML
file.

If you would like to experiment with this feature, you can download the
GMD-IPSI PDOM engine from xml.darmstadt.gmd.de/xml. The engine
implements Persistent DOM (PDOM), which is an interface that stores
XML documents in binary format. The interface to access the binary docu-
ment is familiar DOM, which means that any application that works with
XML files can be upgraded to binary files with little or no work.

What’s Next
This chapter looked at an object-based interface for XML parsers. In the
next chapter, you will look at an event-based interface: SAX. It is interest-
ing to compare SAX and DOM.

229What's Next

09 2429 CH07 2.29.2000 2:23 PM Page 229

10 2429 CH08 11/12/99 1:09 PM Page 230

8

Alternative API: SAX
In the previous chapter, you learned how to use DOM, an object-based API
for XML parsers. This chapter complements the discussion on XML parsers
with an introduction to an event-based interface, SAX.

In this chapter, you learn how to use event-based interfaces. You will see
that these interfaces

• operate at a lower level than object-based interfaces

• give you more control than object-based interfaces

• are more efficient than object-based interfaces

• require more work than object-based interfaces

Why Another API?

✔ The “What Is a Parser?” section in Chapter 7, “The Parser and DOM” (page 191),

introduced you to XML parsers.

Parsers are software components that decode XML files on behalf of the
application. Parsers effectively shield developers from the intricacies of the
XML syntax.

You also learned how to integrate a parser with an application. Figure 8.1
shows the two components of a typical XML program:

• the parser, which deals exclusively with the XML file and makes its
content available to the application

• the application, which consumes the file content

Obviously, the application can be simple, such as the process of printing
information onscreen, or very complex, such as a distributed application to
order goods over the Internet.

The previous chapter and this chapter concentrate on the dotted line, the
interface or API (Application Programming Interface) between the parser
and the application.

10 2429 CH08 11/12/99 1:09 PM Page 231

Figure 8.1: Architecture of an XML program

Object-Based and Event-Based Interfaces
In Chapter 7, “The Parser and DOM,” you learned that there are two
classes of interfaces for parsers: object-based and event-based interfaces.

✔ The section “Getting Started with DOM” in Chapter 7 introduced DOM as an example of

object-based parser. DOM was developed and published by the W3C.

DOM is an object-based interface: It communicates with the application by
explicitly creating a tree of objects in memory. The tree in memory is an
exact map of the tree of elements in the XML file.

Object-based interfaces, like DOM, are simple because they offer a view
that closely matches the underlying document. They are also ideal for those
applications whose goal is to manipulate XML for the sake of manipulating
XML documents (such as a browser or an editor).

DOM benefits from being the official interface endorsed by the W3C.
Internet Explorer implements some support for DOM. Netscape will do so
in the next version. XML editors and XML databases are also adopting
DOM as their preferred interface.

However, for applications that are not so XML-centric, an object-based
interface is less appealing. Indeed, those applications have their own data
structure and their own objects, which are not based on XML.

For these applications, it is more sensible not to build the DOM tree, but to
directly load the document in their data structure.

Otherwise, the application has to maintain two copies of the data in mem-
ory (one in the DOM tree and one in the application’s own structure), which
is inefficient. This might not be a problem for desktop applications, but can
bring a server down to its knees.

Figure 8.2 illustrates how an application can map between an XML tree
and its own data structure.

232 Chapter 8: Alternative API: SAX

10 2429 CH08 11/12/99 1:09 PM Page 232

233Why Another API?

Figure 8.2: Mapping the XML structure to the application structure

In these cases, an event-based interface is more sensible. The major differ-
ence between an object-based interface and an event-based one is that the
event-based interface does not explicitly build the tree. Rather, it builds it
implicitly.

Event-Based Interfaces
As the name implies, an event-based parser sends events as it reads
through an XML documents. Parser events are similar to user-interface
events such as ONCLICK (in a browser) or AWT events (in Java).

Events alert the application that something happened and the application
might want to react. Applications register event handlers, which are func-
tions that process the events.

In a browser, events are typically generated in response to user actions:
The user clicks on a button, the button fires an ONCLICK event.

With an XML parser, events are not related to user actions, but to elements
in the XML document being read. There are events for

• element opening tags

• element closing tags

• content of elements

• entities

• parsing errors

10 2429 CH08 11/12/99 1:09 PM Page 233

Figure 8.3 shows how the parser generates events as it progresses along
the document.

234 Chapter 8: Alternative API: SAX

Figure 8.3: The parser generates events.

Listing 8.1 is a price list in XML. It lists the vendors and the prices they
charge for XML training. The structure of this document is shown in
Figure 8.4.
Listing 8.1: A Price List in XML

<?xml version=”1.0”?>

<product>

<name>XML Training</name>

<price price=”999.00” vendor=”Playfield Training”/>

<price price=”699.00” vendor=”XMLi”/>

<price price=”799.00” vendor=”WriteIT”/>

<price price=”1999.00” vendor=”Emailaholic”/>

</product>

E X A M P L E

Figure 8.4: The structure of the price list

The XML parser reads this document and interprets it. Whenever it recog-
nizes something in the document, it generates an event. The parser reads
the XML declaration. It generates an event corresponding to the declara-
tion.

When it encounters the first opening tag, <product>, the parser generates
its second event. The event notifies the application that a product element
is starting.

Next, the parser sees the opening tag for the name element and it generates
its third event.

10 2429 CH08 11/12/99 1:09 PM Page 234

After the opening tag, the parser sees the content of the name element: XML
Training. It generates an event by passing the application the content as a
parameter.

The next event indicates the closing tag for the name element. The parser
has completely parsed the name element. It has fired five events so far:
three events for the name element, one event for the declaration, and one
for product opening tag.

The parser now moves to the first price element. It generates two events
for each price element: one event for the opening tag and one event for the
closing tag.

Even though the closing tag is reduced to the / character in the opening
tag, the parser generates an event for it. The parser passes the element’s
parameters to the application in the event for the opening tag.

There are four price elements, so the parser generates eight events as it
parses them. Finally, the parser meets product’s closing tag and it gener-
ates its last event.

As Figure 8.5 illustrates, taken together, the events describe the document
tree to the application. An opening tag event means “going one level down
in the tree,” whereas a closing tag element means “going one level up in the
tree.”

235Why Another API?

Figure 8.5: How the parser builds the tree implicitly

An event-based interface is the most natural interface for a parser. Indeed,
the parser simply has to report what it sees.

Note that the parser passes enough information to build the document tree
of the XML documents but, unlike an object-based parser, it does not explic-
itly build the tree.

10 2429 CH08 11/12/99 1:09 PM Page 235

N O T E
If needed, the application can build a DOM tree from the events it receives from the
parser. In fact, several object-based parsers are built around an event-based parser.
Internally, they use an event-based parser and they create objects in response to the
events the parser generates.

Why Use Event-Based Interfaces?
Which type of interface do you use? An object-based or an event-based
interface? Unfortunately, there is no clean-cut answer to this question.
Neither of the two interfaces is intrinsically better; they serve different
needs.

The main reason people prefer event-based interfaces is efficiency. Event-
based interfaces are lower level than object-based interfaces. On the posi-
tive side, they give you more control over parsing and enable you to
optimize your application. On the downside, it means more work for you.

As already discussed, an event-based interface consumes fewer resources
than an object-based one, simply because it does not need to build the docu-
ment tree.

Furthermore, with an event-based interface, the application can start pro-
cessing the document as the parser is reading it. With an object-based
interface, the application must wait until the document has been com-
pletely read.

Therefore, event-based interfaces are particularly popular with applications
that process large files (which would take a lot of time to read and create a
document tree) and for servers (which process many documents simultane-
ously).

The major limitation of event-based interfaces is that it is not possible to
navigate through the document as you can with a DOM tree. Indeed, after
firing an event, the parser forgets about it. As you will see, the application
must explicitly buffer those events it is interested in. It might also have
more work in managing the state.

Of course, whether it uses an event-based or an object-based interface, the
parser does a lot of useful work: It reads the document, enforces the XML
syntax, and resolves entities. When using a validating parser, it might vali-
date the document against its DTD. So, there are many reasons to use a
parser.

236 Chapter 8: Alternative API: SAX

10 2429 CH08 11/12/99 1:09 PM Page 236

SAX: The Alternative API
By definition, the DOM recommendation does not apply to event-based
parsers. The members of the XML-DEV mailing list have developed a stan-
dard API for event-based parsers called SAX, short for the Simple API for
XML.

SAX is defined for the Java language. There is a version of SAX for Python
and Perl but currently none for JavaScript or C++. Furthermore, SAX is
not implemented in browsers; it is available only for standalone parsers.

Obviously, the examples in this chapter are written in Java. If you want to
learn how to write Java applications, refer to Appendix A, “Crash Course on
Java.”

SAX is edited by David Megginson and published at www.megginson.com/
SAX. Unlike DOM, SAX is not endorsed by an official standardization body
but it is widely used and is considered a de facto standard.

In particular, Sun has included SAX in ProjectX—an ongoing effort to add
an XML parser to the Java platform. ProjectX also supports DOM so the
parser offers both event-based and object-based interfaces. It is available
from java.sun.com.

The IBM parser, XML for Java (available from www.alphaworks.ibm.com),
and the DataChannel parser, XJParse (available from
www.datachannel.com), are other parsers that support both the DOM and
SAX interfaces.

Microstar’s Ælfred (www.microstar.com) and James Clark’s XP
(www.jclark.com) support only the SAX interface.

Getting Started with SAX
Listing 8.2 is a Java application that finds the cheapest price from the list
of prices in Listing 8.1. The application prints the best price as well as the
name of the vendor.
Listing 8.2: Simple SAX Application

/*

* XML By Example, chapter 8: SAX

*/

package com.psol.xbe;

import org.xml.sax.*;

import org.xml.sax.helpers.ParserFactory;

237SAX: The Alternative API

E X A M P L E

continues

10 2429 CH08 11/12/99 1:09 PM Page 237

/**

* SAX event handler to find the cheapest offering

* in a list of prices.

* @author bmarchal@pineapplesoft.com

*/

public class Cheapest

extends HandlerBase

{

/*

* event handler

*/

/**

* properties we are collecting: cheapest price

*/

protected double min = Double.MAX_VALUE;

/**

* properties we are collecting: cheapest vendor

*/

protected String vendor = null;

/**

* startElement event: the price list is stored as price

* elements with price and vendor attributes

* @param name element’s name

* @param attributes element’s attributes

*/

public void startElement(String name,AttributeList attributes)

{

if(name.equals(“price”))

{

String attribute = attributes.getValue(“price”);

if(null != attribute)

{

238 Chapter 8: Alternative API: SAX

Listing 8.2: continued

10 2429 CH08 11/12/99 1:09 PM Page 238

double price = toDouble(attribute);

if(min > price)

{

min = price;

vendor = attributes.getValue(“vendor”);

}

}

}

}

/**

* helper method: turn a string in a double

* @param string number as a string

* @return the number as a double, or 0.0 if it cannot convert

* the number

*/

protected double toDouble(String string)

{

Double stringDouble = Double.valueOf(string);

if(null != stringDouble)

return stringDouble.doubleValue();

else

return 0.0;

}

/**

* property accessor: vendor name

* @return the vendor with the cheapest offer so far

*/

public String getVendor()

{

return vendor;

}

/**

* property accessor: best price

* @return the best price so far

239SAX: The Alternative API

continues

10 2429 CH08 11/12/99 1:09 PM Page 239

*/

public double getMinimum()

{

return min;

}

/*

* main() method and properties

*/

/**

* the parser class (IBM’s XML for Java)

*/

protected static final String

PARSER_NAME = “com.ibm.xml.parsers.SAXParser”;

/**

* main() method

* decodes command-line parameters and invokes the parser

* @param args command-line argument

* @throw Exception catch-all for underlying exceptions

*/

public static void main(String[] args)

throws Exception

{

// command-line arguments

if(args.length < 1)

{

System.out.println(“java com.psol.xbe.CheapestCL
➥filename”);

return;

}

// creates the event handler

Cheapest cheapest = new Cheapest();

// creates the parser

240 Chapter 8: Alternative API: SAX

Listing 8.2: continued

10 2429 CH08 11/12/99 1:09 PM Page 240

Parser parser = ParserFactory.makeParser(PARSER_NAME);

parser.setDocumentHandler(cheapest);

// invokes the parser against the price list

parser.parse(args[0]);

// prints the results

System.out.println(“The cheapest offer is “ +

cheapest.getVendor() +

“ ($” + cheapest.getMinimum() + ‘)’);

}

}

Compiling the Example
To compile this application, you need a Java Development Kit (JDK) for
your platform. For this example, the Java Runtime is not enough. You can
download the JDK from java.sun.com. Furthermore, you have to download
the IBM parser, XML for Java, from www.alphaworks.ibm.com.

As always, I will post updates on www.mcp.com. So, if you have problems
downloading a component, visit www.mcp.com.

Save Listing 8.2 in a file called Cheapest.java. Go to the DOS prompt,
change to the directory where you saved Cheapest.java, and create an
empty directory called classes. The compile will place the Java program in
the classes directory. Finally, compile the Java source with
javac -classpath c:\xml4j\xml4j.jar -d classes Cheapest.java

This command assumes you have installed the IBM parser in c:\xml4j; you
might have to adapt the classpath if you installed the parser in a different
directory.

To run the application against the price list, issue the following command:
java -classpath c:\xml4j\xml4j.jar;classes
➥com.psol.xbe.Cheapest prices.xml

This command assumes that the XML price list from Listing 8.1 is in a file
called prices.xml.

C A U T I O N
The programs in this chapter do essentially no error checking. The programs minimize
errors; however, if you type parameters incorrectly, the programs can crash.

241SAX: The Alternative API

10 2429 CH08 11/12/99 1:09 PM Page 241

Running this program against the price list in Listing 8.1 gives the result:
The cheapest offer is XMLi ($699.0)

Note that the classpath points to the parser and to the classes directory.
The fully qualified name of the file is com.psol.xbe.Cheapest.

C A U T I O N
This example won’t work unless you have installed a Java Development Kit.

If there is an error message similar to “Exception in thread “main”
java.lang.NoClassDefFoundError”, it means that either the classpath is incorrect
(be sure it points to the right directories) or that you typed an incorrect class name
(com.psol.xbe.Cheapest).

SAX Interfaces and Objects
Events in SAX are defined as methods attached to specific Java interfaces.
An application implements some of these methods and registers as an
event-handler with the parser.

Main SAX Events
SAX groups its events in a few interfaces:

• DocumentHandler defines events related to the document itself (such as
opening and closing tags). Most applications register for these events.

• DTDHandler defines events related to the DTD. Few applications regis-
ter for these events. Moreover, SAX does not define enough events to
completely report on the DTD (SAX-validating parsers read and use
the DTD but they cannot pass all the information to the application).

• EntityResolver defines events related to loading entities. Few applica-
tions register for these events. They are required to load entities from
special sources such as a database.

• ErrorHandler defines error events. Applications register for these
events if they need to report errors in a special way.

To simplify work, SAX provides a default implementation for all these
interfaces in the HandlerBase class. It is easier to extend HandlerBase and
override the methods that are relevant for the application rather than to
implement an interface directly.

Parser
To register event handlers and to start parsing, the application uses the
Parser interface. To start parsing, the application calls parse(), a method of
Parser:
parser.parse(args[0]);

242 Chapter 8: Alternative API: SAX

O U T P U T

E X A M P L E

10 2429 CH08 11/12/99 1:09 PM Page 242

Parser defines the following methods:

• parse() starts parsing an XML document. There are two versions of
parse()—one accepts a filename or a URL, the other an InputSource
object (see section “InputSource”).

• setDocumentHandler(), setDTDHandler(), setEntityResolver(), and
setErrorHandler() allow the application to register event handlers.

• setLocale() requests error messages in a specific Locale.

ParserFactory
ParserFactory creates the parser object. It takes the class name for the
parser. For XML for Java, it is com.ibm.xml.parsers.SAXParser. To switch
to another parser, you can change one line and recompile:
protected static final String

PARSER_NAME = “com.ibm.xml.parsers.SAXParser”;

// ...

Parser parser = ParserFactory.makeParser(PARSER_NAME);

For more flexibility, the application can read the class name from the com-
mand line or from a configuration file. In this case, it is even possible to
change the parser without recompiling.

InputSource
InputSource controls how the parser reads files, including XML documents
and entities.

In most cases, documents are loaded from the local file system or from a
URL. The default implementation of InputSource knows how to load them.
However, if an application has special needs, such as loading documents
from a database, it can override InputSource.

The parse() method is available in two versions—one takes a string, the
other an InputSource. The string version uses the default InputSource to
load the document from a file or a URL.

DocumentHandler
Listing 8.2 is simple because it needs to handle only the startElement mes-
sage. As the name implies, the message is sent when the parser sees the
opening tag of an element.

The event is defined by the DocumentHandler interface. The application cre-
ates a new class, Cheapest, which overrides the startElement() method.
The application registers Cheapest as an event handler with the parser.
// creates the event handler

243SAX Interfaces and Objects

E X A M P L E

E X A M P L E

10 2429 CH08 11/12/99 1:09 PM Page 243

Cheapest cheapest = new Cheapest();

// ...

parser.setDocumentHandler(cheapest);

DocumentHandler declares events related to the document. The following
events are available:

• startDocument()/endDocument() notify the application of the docu-
ment’s beginning or ending.

• startElement()/endElement() notify the application that an element
starts or ends (which corresponds to the opening and closing tags
of the element). Attributes are passed as an AttributeList; see
the section “AttributeList” that follows. Empty elements () generate both startElement and endElement
events even though there is only one tag.

• characters()/ignorableWhitespace() notify the application when the
parser finds content (text) in an element. The parser can break a
piece of text in several events or pass it all at once as it sees fit.
However, one event is always attached to a single element. The
ignorableWhitespace event is used for ignorable spaces as defined
by the XML specs.

• processingInstruction() notifies the application of processing instruc-
tions.

• setDocumentLocator() passes a Locator object to the application; see
the section “Locator” that follows. Note that the SAX parser is not
required to supply a Locator, but if it does, it must fire this event
before any other event.

AttributeList
In the event, the application receives the element name and the list of
attributes in an AttributeList.

In this example, the application waits until a price element is found. It
then extracts the vendor name and the price from the list of attributes.
Armed with this information, finding the cheapest product requires a
simple comparison:
public void startElement(String name,AttributeList attributes)

{

if(name.equals(“price”))

{

String attribute = attributes.getValue(“price”);

244 Chapter 8: Alternative API: SAX

E X A M P L E

10 2429 CH08 11/12/99 1:09 PM Page 244

if(null != attribute)

{

double price = toDouble(attribute);

if(min > price)

{

min = price;

vendor = attributes.getValue(“vendor”);

}

}

}

}

The parser uses AttributeList in the startElement event. As the name
implies, an AttributeList encapsulates a list of attributes. It defines the
following methods:

• getLength() returns the length of the attribute list.

• getName(i) returns the name of the ith attribute (where i is an integer).

• getType(i)/getType(name) return the type of the ith attribute or the
type of the attribute whose name is given. The first method accepts an
integer, the second a string. The type is a string, as used in the DTD:
“CDATA”, “ID”, “IDREF”, “IDREFS”, “NMTOKEN”, “NMTOKENS”, “ENTITY”,
“ENTITIES”, or “NOTATION”.

• getValue(i)/getValue(name) return the value of the ith attribute or
the value of an attribute whose name is given.

Locator
A Locator enables the application to retrieve line and column positions. The
parser may provide a Locator object. If the application is interested in line
information, it must retain the reference to the Locator.

Locator defines the following methods:

• getColumnNumber() returns the column where the current event ends.
In an endElement event, it would return the last column of the end tag.

• getLineNumber() returns the line where the current event ends. In an
endElement event, it would return the last line of the end tag.

• getPublicId() returns the public identifier for the current document
event.

• getSystemId() returns the system identifier for the current document
event.

245SAX Interfaces and Objects

10 2429 CH08 11/12/99 1:09 PM Page 245

DTDHandler
DTDHandler declares two events related to parsing the DTD:

• notationDecl() notifies the application that a notation has been
declared.

• unparsedEntityDecl() notifies the application that an unparsed entity
declaration has been found.

EntityResolver

✔ The EntityResolver interface defines only one event, resolveEntity(). The

method returns an InputSource, which was introduced in the section “InputSource”

on page 243.

Few applications need to implement EntityResolver because the SAX
parser can resolve filenames and most URLs already.

ErrorHandler
The ErrorHandler interface defines several events in case of errors.
Applications that handle these events can provide custom error processing.

After a custom error handler is installed, the parser doesn’t throw excep-
tions anymore. Throwing exceptions is the responsibility of the event
handlers.

There are three methods in this interface that correspond to three levels or
gravity of errors:

• warning() signals problems that are not errors as defined by the XML
specification. For example, some parsers issue a warning when there
is no XML declaration. It is not an error (because the declaration is
optional), but it is worth noting.

• error() signals errors as defined by the XML specification.

• fatalError() signals fatal errors, as defined by the XML specification.

SAXException
Most methods defined by the SAX standard can throw a SAXException.
A SAXException signals an error while parsing the XML document.

The error can either be a parsing error or an error in an event handler. To
report errors from the event handler, it is possible to wrap exceptions in
SAXException.

246 Chapter 8: Alternative API: SAX

10 2429 CH08 11/12/99 1:09 PM Page 246

Suppose an event handler catches an IndexOutOfBoundsException while
processing the startElement event. The event handler wraps the
IndexOutOfBoundsException in a SAXException:
public void startElement(String name,AttributeList attributes)

{

try

{

// the code may throw an IndexOutOfBoundsException

}

catch(IndexOutOfBounds e)

{

throw new SAXException;

}

}

The SAXException flows all the way up to the parse() method where it is
caught and interpreted:
try

{

parser.parse(uri);

}

catch(SAXException e)

{

Exception x = e.getException();

if(null != x)

if(x instanceof IndexOutOfBoundsException)

// process the IndexOutOfBoundsException

}

Maintaining the State
Listing 8.1 on page 234 is convenient for a SAX parser because the informa-
tion is stored as attributes of price elements. The application has to register
only for elementStart.

Listing 8.3 is more complex because the information is scattered across sev-
eral elements. Specifically, vendors have different prices depending on the
urgency of the delivery. Therefore, finding the lowest price is more difficult.
If the user waits longer, he or she might get a better price. Figure 8.6 illus-
trates the structure of the document.

247Maintaining the State

E X A M P L E

E X A M P L E

10 2429 CH08 11/12/99 1:09 PM Page 247

Figure 8.6: Price list structure

Listing 8.3: Price List with Delivery Information

<?xml version=”1.0”?>

<product>

<name>XML Training</name>

<vendor>

<name>Playfield Training</name>

<price delivery=”5”>999.00</price>

<price delivery=”15”>899.00</price>

</vendor>

<vendor>

<name>XMLi</name>

<price delivery=”3”>2999.00</price>

<price delivery=”30”>1499.00</price>

<price delivery=”45”>699.00</price>

</vendor>

<vendor>

<name>WriteIT</name>

<price delivery=”5”>799.00</price>

<price delivery=”15”>899.00</price>

</vendor>

<vendor>

<name>Emailaholic</name>

<price delivery=”2”>1999.00</price>

</vendor>

</product>

To find the best deal, the application must collect information from several
elements. However, the parser may generate up to three events for each
element (start, character, and end). The application must somehow relate
events and elements by managing the state.

✔ See the section “Managing the State” in Chapter 7 for a discussion of state (page 207).

The example in this section achieves the same result but for a SAX parser.

248 Chapter 8: Alternative API: SAX

10 2429 CH08 11/12/99 1:09 PM Page 248

Listing 8.4 is a new Java application that looks for the best deal in the
price list. When looking for the best deal, it takes the urgency in considera-
tion. Indeed, the cheapest vendor (XMLi) is also the slowest one to deliver.
On the other hand, Emailaholic is expensive but it delivers in two days.
Listing 8.4: Improved Best Deal Looker

/*

* XML By Example, chapter 8: SAX

*/

package com.psol.xbe;

import java.util.*;

import org.xml.sax.*;

import org.xml.sax.helpers.ParserFactory;

/**

* Starting point class: initializes the parser, creates the

* various objects, etc.

* @author bmarchal@pineapplesoft.com

*/

public class BestDeal

{

/**

* the parser class (IBM’s XML for Java)

*/

private static final String

PARSER_NAME = “com.ibm.xml.parsers.SAXParser”;

/**

* main() method

* decodes command-line parameters and invokes the parser

* @param args command-line argument

* @throw Exception catch-all for underlying exceptions

*/

public static void main(String[] args)

throws Exception

{

249Maintaining the State

continues

10 2429 CH08 11/12/99 1:09 PM Page 249

if(args.length < 2)

{

System.out.println(“java com.psol.xbe.BestDeal filename delivery”);

return;

}

ComparingMachine comparingMachine =

new ComparingMachine(Integer.parseInt(args[1]));

SAX2Internal sax2Internal =

new SAX2Internal(comparingMachine);

try

{

Parser parser = ParserFactory.makeParser(PARSER_NAME);

parser.setDocumentHandler(sax2Internal);

parser.parse(args[0]);

}

catch(SAXException e)

{

Exception x = e.getException();

if(null != x)

throw x;

else

throw e;

}

System.out.println(“The best deal is proposed by “ +

comparingMachine.getVendor());

System.out.println(“a “ +

comparingMachine.getProductName() +

“ at “ + comparingMachine.getPrice() +

“ delivered in “ +

comparingMachine.getDelivery() +

“ days”);

}

}

250 Chapter 8: Alternative API: SAX

Listing 8.4: continued

10 2429 CH08 11/12/99 1:09 PM Page 250

/**

* This class receives events from the SAX2Internal adapter

* and does the comparison required.

* This class holds the “business logic.”

*/

class ComparingMachine

{

/**

* properties we are collecting: best price

*/

protected double bestPrice = Double.MAX_VALUE;

/**

* properties we are collecting: delivery time

*/

protected int proposedDelivery = Integer.MAX_VALUE;

/**

* properties we are collecting: product and vendor names

*/

protected String productName = null,

vendorName = null;

/**

* target delivery value (we refuse elements above this target)

*/

protected int targetDelivery;

/**

* creates a ComparingMachine

* @param td the target for delivery

*/

public ComparingMachine(int td)

{

targetDelivery = td;

}

251Maintaining the State

continues

10 2429 CH08 11/12/99 1:09 PM Page 251

/**

* called by SAX2Internal when it has found the product name

* @param name the product name

*/

public void setProductName(String name)

{

productName = name;

}

/**

* called by SAX2Internal when it has found a price

* @param vendor vendor’s name

* @param price price proposal

* @param delivery delivery time proposal

*/

public void compare(String vendor,double price,int delivery)

{

if(delivery <= targetDelivery)

{

if(bestPrice > price)

{

bestPrice = price;

vendorName = vendor;

proposedDelivery = delivery;

}

}

}

/**

* property accessor: vendor’s name

* @return the vendor with the cheapest offer so far

*/

public String getVendor()

{

return vendorName;

}

252 Chapter 8: Alternative API: SAX

Listing 8.4: continued

10 2429 CH08 11/12/99 1:09 PM Page 252

/**

* property accessor: best price

* @return the best price so far

*/

public double getPrice()

{

return bestPrice;

}

/**

* property accessor: proposed delivery

* @return the proposed delivery time

*/

public int getDelivery()

{

return proposedDelivery;

}

/**

* property accessor: product name

* @return the product name

*/

public String getProductName()

{

return productName;

}

}

/**

* SAX event handler to adapt from the SAX interface to

* whatever the application uses internally.

*/

class SAX2Internal

extends HandlerBase

{

/**

253Maintaining the State

continues

10 2429 CH08 11/12/99 1:09 PM Page 253

* state constants

*/

final protected int START = 0,

PRODUCT = 1,

PRODUCT_NAME = 2,

VENDOR = 3,

VENDOR_NAME = 4,

VENDOR_PRICE = 5;

/**

* the current state

*/

protected int state = START;

/**

* current leaf element and current vendor

*/

protected LeafElement currentElement = null,

currentVendor = null;

/**

* BestDeal object this event handler interfaces with

*/

protected ComparingMachine comparingMachine;

/**

* creates a SAX2Internal

* @param cm the ComparingMachine to interface with

*/

public SAX2Internal(ComparingMachine cm)

{

comparingMachine = cm;

}

/**

* startElement event

* @param name element’s name

254 Chapter 8: Alternative API: SAX

Listing 8.4: continued

10 2429 CH08 11/12/99 1:09 PM Page 254

* @param attributes element’s attributes

*/

public void startElement(String name,AttributeList attributes)

{

// this accepts many combinations of elements

// it would work if new elements where being added, etc.

// this ensures maximal flexibility: if the document

// has to be validated, a validating parser does it

switch(state)

{

case START:

if(name.equals(“product”))

state = PRODUCT;

break;

case PRODUCT:

if(name.equals(“name”))

{

state = PRODUCT_NAME;

currentElement = new LeafElement(name,attributes);

}

if(name.equals(“vendor”))

state = VENDOR;

break;

case VENDOR:

if(name.equals(“name”))

{

state = VENDOR_NAME;

currentElement = new LeafElement(name,attributes);

}

if(name.equals(“price”))

{

state = VENDOR_PRICE;

currentElement = new LeafElement(name,attributes);

}

break;

}

}

255Maintaining the State

continues

10 2429 CH08 11/12/99 1:09 PM Page 255

/**

* content of the element

* @param chars documents characters

* @param start first character in the content

* @param length last character in the content

*/

public void characters(char[] chars,int start,int length)

{

switch(state)

{

case PRODUCT_NAME:

case VENDOR_NAME:

case VENDOR_PRICE:

currentElement.append(chars,start,length);

break;

}

}

/**

* endElement event

* @param name element’s name

*/

public void endElement(String name)

{

switch(state)

{

case PRODUCT_NAME:

if(name.equals(“name”))

{

state = PRODUCT;

comparingMachine.setProductName(

currentElement.getText());

}

break;

case VENDOR:

if(name.equals(“vendor”))

256 Chapter 8: Alternative API: SAX

Listing 8.4: continued

10 2429 CH08 11/12/99 1:09 PM Page 256

state = PRODUCT;

break;

case VENDOR_NAME:

if(name.equals(“name”))

{

state = VENDOR;

currentVendor = currentElement;

}

break;

case VENDOR_PRICE:

if(name.equals(“price”))

{

state = VENDOR;

double price = toDouble(currentElement.getText());

Dictionary attributes =

currentElement.getAttributes();

String stringDelivery =

(String)attributes.get(“delivery”);

int delivery = Integer.parseInt(stringDelivery);

comparingMachine.compare(currentVendor.getText(),

price,

delivery);

}

break;

}

}

/**

* helper method: turn a string in a double

* @param string number as a string

* @return the number as a double, or 0.0 if it cannot convert

* the number

*/

protected double toDouble(String string)

{

Double stringDouble = Double.valueOf(string);

if(null != stringDouble)

257Maintaining the State

continues

10 2429 CH08 11/12/99 1:09 PM Page 257

return stringDouble.doubleValue();

else

return 0.0;

}

}

/*

* helper class: used to store a leaf element content

*/

class LeafElement

{

/**

* property: element’s name

*/

protected String name;

/**

* property: element’s attributes

*/

protected Dictionary attributes;

/**

* property: element’s text

*/

protected StringBuffer text = new StringBuffer();

/**

* creates a new element

* @param n element’s name

* @param a element’s attributes

*/

public LeafElement(String n,AttributeList al)

{

name = n;

attributes = new Hashtable();

for(int i = 0;i < al.getLength();i++)

attributes.put(al.getName(i),al.getValue(i));

258 Chapter 8: Alternative API: SAX

Listing 8.4: continued

10 2429 CH08 11/12/99 1:09 PM Page 258

}

/**

* append to the current text

* @param chars array of characters

* @param start where to start in chars

* @param length how many characters to consider in chars

*/

public void append(char[] chars,int start,int length)

{

text.append(chars,start,length);

}

/**

* property accessor: text

*/

public String getText()

{

return text.toString();

}

/**

* property accessor: name

*/

public String getName()

{

return name;

}

/**

* property accessor: attributes

*/

public Dictionary getAttributes()

{

return attributes;

}

}

259Maintaining the State

10 2429 CH08 11/12/99 1:09 PM Page 259

You compile and run this application just like the “Cheapest” application
introduced previously. The results depend on the urgency of the delivery.
You will notice that this program takes two parameters: the filename and
the longest delay.
java -classpath c:\xml4j\xml4j.jar;classes com.psol.xbe.BestDeal
➥product.xml 60

returns
The best deal is proposed by XMLi

a XML Training at 699.0 delivered in 45 days

whereas
java -classpath c:\xml4j\xml4j.jar;classes com.psol.xbe.BestDeal
➥product.xml 3

returns
The best deal is proposed by Emailaholic

a XML Training at 1999.0 delivered in 2 days

A Layered Architecture
Listing 8.4 is the most complex application you have seen so far. It’s logical:
The SAX parser is very low level so the application has to take over a lot of
the work.

The application is organized around two classes: SAX2Internal and
ComparisonMachine. SAX2Internal manages the interface with the SAX
parser. It manages the state and groups several elements in a coherent
way. For that purpose, it uses the LeafElement class as temporary storage.

ComparisonMachine has the logic to perform price comparison. It also main-
tains information in a structure that is optimized for the application, not
XML. The architecture for this application is illustrated in Figure 8.7.

SAX2Internal handles several events from DocumentHandler. It registers the
startElement, endElement, and character events.

260 Chapter 8: Alternative API: SAX

O U T P U T

10 2429 CH08 11/12/99 1:09 PM Page 260

Figure 8.7: The architecture for the application

When processing these events, SAX2Internal needs to know where it is in
the document tree. When handling a character event, for example, it needs
to know whether the text is attached to a name or to a price element. It
also needs to know whether the name is the product name or the vendor
name.

States
A SAX parser, unlike a DOM parser, does not provide context information.
Therefore, the application has to track its location within the document.

First, you have to identify all possible states and determine how to transi-
tion from one state to the next. It’s easy to derive states from the document
structure in Figure 8.6.

It is obvious that the application will first encounter a product tag. The
first state should therefore be “within a product element.” From there, the
application will reach a product name. The second state is therefore “within
a name element in the product element.”

The next element has to be a vendor, so the third state is “within a vendor
element in the product element.” The fourth state is “within a name ele-
ment in a vendor element in a product element” because a name follows the
vendor.

The name is followed by a price element and the corresponding state is
“within a price element in a vendor element in a product element.”
Afterward, the parser will encounter either a price element or another
vendor element. You already have state for these two cases.

It’s easier to visualize this concept on a graph with state and state transi-
tions, such as the one shown in Figure 8.8. Note that there are two differ-
ent states related to two different name elements depending on whether
you are dealing with the product/name or product/vendor/name.

261Maintaining the State

10 2429 CH08 11/12/99 1:09 PM Page 261

Figure 8.8: State transition diagram

In the example, the state variable is the current state:
/**

* state constants

*/

final protected int START = 0,

PRODUCT = 1,

PRODUCT_NAME = 2,

VENDOR = 3,

VENDOR_NAME = 4,

VENDOR_PRICE = 5;

/**

* the current state

*/

protected int state = START;

Transitions
1. The value of state changes in response to events. Specifically, in the

example, elementStart and elementEnd cause the state to transition:
switch(state)

{

case START:

if(name.equals(“product”))

262 Chapter 8: Alternative API: SAX

E X A M P L E

E X A M P L E

10 2429 CH08 11/12/99 1:09 PM Page 262

state = PRODUCT;

break;

case PRODUCT:

if(name.equals(“name”))

{

state = PRODUCT_NAME;

currentElement = new LeafElement(name,attributes);

}

if(name.equals(“vendor”))

state = VENDOR;

break;

case VENDOR:

if(name.equals(“name”))

{

state = VENDOR_NAME;

currentElement = new LeafElement(name,attributes);

}

if(name.equals(“price”))

{

state = VENDOR_PRICE;

currentElement = new LeafElement(name,attributes);

}

break;

}

}

SAX2Internal creates instances of LeafElement to temporarily store the con-
tent of the name and price elements. At any time, SAX2Internal maintains a
small subset of the tree in memory. Note that, unlike DOM, it never builds
the complete tree but builds only small subsets. It also discards the subset
as the application consumes them.

C A U T I O N
The values in AttributeList are available only during the startElement event.
Consequently, LeafElement copies them to a Dictionary.

2. The character event is used to record the content of an element. It
makes sense to record text only in the name and price elements, so the
event handler uses the state.

263Maintaining the State

E X A M P L E

10 2429 CH08 11/12/99 1:09 PM Page 263

switch(state)

{

case PRODUCT_NAME:

case VENDOR_NAME:

case VENDOR_PRICE:

currentElement.append(chars,start,length);

break;

}

3. The event handler for the endElement event updates the state and
calls ComparisonMachine. ComparisonMachine consumes the data

switch(state)

{

case PRODUCT_NAME:

if(name.equals(“name”))

{

state = PRODUCT;

comparingMachine.setProductName(

currentElement.getText());

}

break;

case VENDOR:

if(name.equals(“vendor”))

state = PRODUCT;

break;

case VENDOR_NAME:

if(name.equals(“name”))

{

state = VENDOR;

currentVendor = currentElement;

}

break;

case VENDOR_PRICE:

if(name.equals(“price”))

{

state = VENDOR;

double price = toDouble(currentElement.getText());

Dictionary attributes =

currentElement.getAttributes();

264 Chapter 8: Alternative API: SAX

10 2429 CH08 11/12/99 1:09 PM Page 264

String stringDelivery =

(String)attributes.get(“delivery”);

int delivery = Integer.parseInt(stringDelivery);

comparingMachine.compare(currentVendor.getText(),

price,

delivery);

}

break;

}

Lessons Learned
Listing 8.4 is typical for a SAX application. The SAX event handler pack-
ages the data in the format most appropriate for the application. It might
have to build a partial tree (in this case, using LeafElement) in the process.

The application logic (in ComparisonMachine) is totally unaware of XML. As
far as it is concerned, the data could be coming from a database or a
comma-delimited file.

Because of this clean-cut separation between the application logic and the
parsing, it is a good idea to adopt a layered approach and use a separate
class for the event handler.

The example also clearly illustrates that SAX is more efficient than DOM
but it requires more work from the programmer. With a SAX parser, the
programmer has to explicitly manage states and transitions between states.

With DOM, the state was implicit in the recursive walk of the tree.

Flexibility
XML is a very flexible standard. However, in practice, XML applications are
only as flexible as you, the programmer, make them. In this section, we will
look at some tips to ensure your applications exploit XML flexibility.

Build for Flexibility
This application puts very few constraints on the structure of the underly-
ing document. It simply ignores new elements. For example, it would accept
the following vendor element:
<vendor>

<name>Playfield Training</name>

<contact>John Doe</contact>

265Flexibility

E X A M P L E

10 2429 CH08 11/12/99 1:09 PM Page 265

<price delivery=”5”>999.00</price>

<price delivery=”15”>899.00</price>

</vendor>

but it would ignore the contact information. In general, it’s a good idea to
simply ignore unknown elements. Doing so provides more flexibility when
the document evolves.

Enforce a Structure
It’s not difficult to enforce a specific structure. The following code snippet
checks the structure and throws a SAXException if a vendor element con-
tains anything but name or price elements.
case VENDOR:

if(name.equals(“name”))

{

state = VENDOR_NAME;

currentElement = new LeafElement(name,attributes);

}

else if(name.equals(“price”))

{

state = VENDOR_PRICE;

currentElement = new LeafElement(name,attributes);

}

else

throw new SAXException(“<name> or <price> expected”);

break;

In practice, if the application is really dependent on the structure of the
document, it is easier to write a DTD and use a validating parser.

What’s Next
In the previous chapter and in this chapter, you learned how to read XML
documents. In the next chapter, you learn how to write documents, thereby
closing the loop.

266 Chapter 8: Alternative API: SAX

E X A M P L E

10 2429 CH08 11/12/99 1:09 PM Page 266

10 2429 CH08 11/12/99 1:09 PM Page 267

11 2429 CH09 11/12/99 1:02 PM Page 268

9

Writing XML
In the last four chapters, you learned how to use XML documents in your
applications. You studied style sheets and how to convert XML documents
in HTML. You also learned how to read XML documents from JavaScript or
Java applications with a parser.

This chapter looks at the mirror problem: how to write XML documents
from an application. The mirror component for the parser is called a gener-
ator. Whereas the parser reads XML documents, the generator writes them.

In this chapter, you learn how to write documents

• through DOM, which is ideal for modifying XML documents.

• through your own generator, which is more efficient.

The Parser Mirror
In practice, some parsers integrate a generator. They can read and write
XML documents. Consequently, the term parser is often used to symbolize
the combination of the parser and the generator.

There are two schools of thought when it comes to generators:

• The first school argues that you need packaged generators for the
same reason you need packaged parsers: to shield the programmer
from the XML syntax.

• The other school argues that writing XML documents is simple and
can easily be done with ad hoc code.

As usual, I’m a pragmatist and I choose one option or the other depending
on the needs of the application at hand. In general, however, it is dramati-
cally easier to generate XML documents than to read them. This is because
you control what you write but the author controls what you read.

Indeed, when reading a document, you may have to deal not only with tags
but also with entities, exotic character sets, and notations—not to mention
errors and DTD validation.

11 2429 CH09 11/12/99 1:02 PM Page 269

However, when writing the document, you decide. If your applications don’t
need entities, don’t use them. If you are happy with ASCII, stick to it. Most
applications need few of the features of XML besides the tagging mecha-
nism.

Therefore, although a typical XML parser is a thousand lines of code, a sim-
ple but effective generator can be written in a dozen lines.

This chapter looks at both approaches. You’ll start by using a DOM parser
to generate XML documents and then you’ll see how to write your own gen-
erator. Finally, you will see how to support different DTDs.

The techniques are illustrated with JavaScript but port easily in to Java.

Modifying a Document with DOM
In Chapter 7, “The Parser and DOM,” you saw how DOM parsers read doc-
uments. That is only one half of DOM. The other half is writing XML docu-
ments. DOM objects have methods to support creating or modifying XML
documents.

Listing 9.1 is the XML price list used in Chapter 7.

✔ The example in the section “A DOM Application” in Chapter 7 (page 199) converted the

prices into Euros and printed the result.

With small changes to the original application, you can record the new
prices in the original document.
Listing 9.1: XML Price List

<?xml version=”1.0”?>

<products>

<product>

<name>XML Editor</name>

<price>499.00</price>

</product>

<product>

<name>DTD Editor</name>

<price>199.00</price>

</product>

<product>

<name>XML Book</name>

<price>19.99</price>

</product>

<product>

270 Chapter 9: Writing XML

E X A M P L E

11 2429 CH09 11/12/99 1:02 PM Page 270

<name>XML Training</name>

<price>699.00</price>

</product>

</products>

Listing 9.2 is the HTML form for a new version of the currency conversion
that will modify the XML file.
Listing 9.2: HTML Form for the Currency Converter

<HTML>

<HEAD>

<TITLE>Currency Conversion</TITLE>

<SCRIPT LANGUAGE=”JavaScript” SRC=”conversion.js”></SCRIPT>

</HEAD>

<BODY>

<CENTER>

<FORM ID=”controls”>

File: <INPUT TYPE=”TEXT” NAME=”fname”

VALUE=”prices.xml”>

Rate: <INPUT TYPE=”TEXT” NAME=”rate”

VALUE=”0.95274” SIZE=”4”>

<INPUT TYPE=”BUTTON” VALUE=”Convert”

ONCLICK=”convert(controls,xml)”>

<INPUT TYPE=”BUTTON” VALUE=”Clear”

ONCLICK=”output.value=’’”>

<!-- need one character in the text area -->

<TEXTAREA NAME=”output” ROWS=”22” COLS=”70” READONLY>

</TEXTAREA>

</FORM>

<xml id=”xml”></xml>

</CENTER>

</BODY>

</HTML>

Listing 9.2 is familiar from Chapter 7. Listing 9.3 is the JavaScript file,
conversion.js, where the real action takes place. Figure 9.1 shows the
result in a browser.

271Modifying a Document with DOM

11 2429 CH09 11/12/99 1:02 PM Page 271

Listing 9.3: JavaScript Code

function convert(form,xmldocument)

{

var fname = form.fname.value,

output = form.output,

rate = form.rate.value;

output.value = “”;

var document = parse(fname,xmldocument),

topLevel = document.documentElement;

walkNode(topLevel,document,rate);

addHeader(document,rate);

output.value = document.xml;

}

function parse(uri,xmldocument)

{

xmldocument.async = false;

xmldocument.load(uri);

if(xmldocument.parseError.errorCode != 0)

alert(xmldocument.parseError.reason);

return xmldocument;

}

function walkNode(node,document,rate)

{

if(node.nodeType == 1)

{

if(node.nodeName == “product”)

walkProduct(node,document,rate);

else

{

var children,

i;

272 Chapter 9: Writing XML

11 2429 CH09 11/12/99 1:02 PM Page 272

children = node.childNodes;

for(i = 0;i < children.length;i++)

walkNode(children.item(i),document,rate);

}

}

}

function walkProduct(node,document,rate)

{

if(node.nodeType == 1 && node.nodeName == “product”)

{

var price,

children,

i;

children = node.childNodes;

for(i = 0;i < children.length;i++)

{

var child = children.item(i);

if(child.nodeType == 1)

if(child.nodeName == “price”)

price = child;

}

// append the new child after looping to avoid infinite loop

var element = document.createElement(“price”),

text = document.createTextNode(getText(price) * rate);

element.setAttribute(“currency”,”eur”);

element.appendChild(text);

node.appendChild(element);

price.setAttribute(“currency”,”usd”);

}

}

function addHeader(document,rate)

{

var comment = document.createComment(

“Rate used for this conversion: “ + rate),

stylesheet = document.createProcessingInstruction(

“xml-stylesheet”,

273Modifying a Document with DOM

continues

11 2429 CH09 11/12/99 1:02 PM Page 273

“href=\”prices.css\” type=\”text/css\””),

topLevel = document.documentElement;

document.insertBefore(comment,topLevel);

document.insertBefore(stylesheet,comment);

}

function getText(node)

{

return node.firstChild.data;

}

274 Chapter 9: Writing XML

Listing 9.3: continued

O U T P U T

Figure 9.1: Result in a browser

This example displays the XML document in a form. The section “Doing
Something with the XML Documents” explains how to save it.

Inserting Nodes
1. Most of Listing 9.3 is familiar. It walks through the price list and

converts prices from American dollars to Euros. The novelty is that it
inserts a new price element in the price list with the price in Euros.
It also adds a currency attribute to every price element.

E X A M P L E

11 2429 CH09 11/12/99 1:02 PM Page 274

function walkProduct(node,document,rate)

{

if(node.nodeType == 1 && node.nodeName == “product”)

{

var price,

children,

i;

children = node.childNodes;

for(i = 0;i < children.length;i++)

{

var child = children.item(i);

if(child.nodeType == 1)

if(child.nodeName == “price”)

price = child;

}

// append the new child after looping to avoid infinite loop

var element = document.createElement(“price”),

text = document.createTextNode(getText(price) * rate);

element.setAttribute(“currency”,”eur”);

element.appendChild(text);

node.appendChild(element);

price.setAttribute(“currency”,”usd”);

}

}

The DOM Document object has methods to create elements, comments, text
nodes, processing instruction, and so on. The walkProduct() function uses
both createElement() and createTextNode().

The DOM Node object has methods for adding and removing objects from
the document tree. Because most DOM objects are derived from Node, they
inherit these methods. The walkProduct() function uses appendChild() to
insert the new nodes.

Finally, Element has a setAttribute() method that creates new attributes.

C A U T I O N
Don’t add children to a node while looping through them, or you will create an infinite
loop.

275Modifying a Document with DOM

11 2429 CH09 11/12/99 1:02 PM Page 275

2. While modifying the document, it is easy to attach a style sheet to it.
The addHeader() function appends a small header at the beginning of
the document with a style sheet and a comment.

function addHeader(document,rate)

{

var comment = document.createComment(

“Rate used for this conversion: “ + rate),

stylesheet = document.createProcessingInstruction(

“xml-stylesheet”,

“href=\”prices.css\” type=\”text/css\””),

topLevel = document.documentElement;

document.insertBefore(comment,topLevel);

document.insertBefore(stylesheet,comment);

}

To attach a style sheet, you can simply create a processing instruction.
addHeader() uses insertBefore() to control where the new nodes are being
added.

Saving As XML
Unfortunately, the current DOM recommendation does not specify how to
retrieve the actual XML markup from the XML island. In the Microsoft
implementation, the Document object has an xml property.
var document = parse(fname,xmldocument),

topLevel = document.documentElement;

walkNode(topLevel,document,rate);

addHeader(document,rate);

output.value = document.xml;

C A U T I O N
Theoretically, it should be possible to modify an XML document that is being displayed
by the browser. However, in practice, the support for DOM is not strong enough.

With Internet Explorer, true support for DOM is limited to XML islands. As you saw in
Chapter 7, documents being displayed are also available as DOM objects. However, it is
not possible to manipulate these DOM trees. This limitation will probably be fixed in
future versions of the browsers.

276 Chapter 9: Writing XML

E X A M P L E

E X A M P L E

11 2429 CH09 11/12/99 1:02 PM Page 276

DOM Methods to Create and Modify Documents
This section defines properties and methods of DOM that are related to
document manipulation. These methods and properties are in addition to
the properties introduced in Chapter 7.

✔ You will find the original list of methods and properties in the section “Getting Started

with DOM” in Chapter 7 (page 198).

Document
In addition to the properties introduced in Chapter 7, Document defines the
following methods:

• createAttribute(name) creates an Attr object called name.

• createCDATASection(data) creates a CDATASection object with the
data.

• createComment(data) creates a Comment object.

• createDocumentFragment() creates an empty DocumentFragment object.

• createElement(name) creates an Element object.

• createEntityReference(name) creates an EntityReference object called
name.

• createProcessingInstruction(target,data) creates a
ProcessingInstruction object for the target.

• createTextNode(data) creates a TextNode object.

Node
Node defines the following methods for adding and removing objects to or
from the document tree. Because many DOM objects are derived from Node,
they inherit these methods:

• appendChild(child) appends child to the end of the list of the chil-
dren.

• insertBefore(child,before) appends child before before. before
must be a child of the node.

• replaceChild(child,toReplace) replaces toReplace with child;
toReplace must be a child of the node.

• removeChild(child) removes child from the node’s children.

• cloneNode(deep) creates a copy of the node. If deep is true, it also
clones all the children of the node recursively.

277DOM Methods to Create and Modify Documents

11 2429 CH09 11/12/99 1:02 PM Page 277

• hasChildNodes() returns true if the node has children; false other-
wise.

CharacterData
CharacterData defines the following methods. These methods are inherited
by Text, Comment, and CDATASection:

• appendData(data) appends data at the end of the text.

• insertData(offset,data) inserts data in the current text starting at
offset.

• deleteData(offset,length) deletes length characters starting at
offset.

• replaceData(offset,length,data) inserts data in place of the charac-
ters at offset for a length.

• substringData(offset,length) returns the characters starting at
offset for a length.

Element
Element has the following methods for manipulating the XML document:

• setAttribute(name,value) creates an attribute called name with the
value.

• setAttribute(attr) adds an Attr object to the element.

• getAttribute(name) returns the value of the attribute called name.

• removeAttribute(name) removes the attribute called name from the
element.

• setAttributeNode(attr)/getAttributeNode(name)/
removeAttributeNode(attr) are similar to setAttribute(),
getAttribute(), and removeAttribute() except that they accept or
return Attr objects.

N O T E
There are two solutions for creating attributes:

• Create the attribute with Document.createAttribute() and attach it to the ele-

ment with setAttribute().

• Create the element and attach it to the element in one step with
Element.setAttribute().

278 Chapter 9: Writing XML

11 2429 CH09 11/12/99 1:02 PM Page 278

Text
Text inherits its properties and methods from CharacterData. It defines one
new method for manipulating the XML document:

splitText(offset) splits the Text object in two Text objects. The new
objects replace the existing one in the tree.

Creating a New Document with DOM
In most cases, applications use DOM to modify existing documents.
However, DOM can also create documents from scratch as Listings 9.4 and
9.5 illustrate.
Listing 9.4: HTML for Price List Creation

<HTML>

<HEAD>

<TITLE>Price List Editor</TITLE>

<SCRIPT LANGUAGE=”JavaScript” SRC=”createlist.js”></SCRIPT>

</HEAD>

<BODY>

<CENTER>

<FORM ID=”controls”>

Product name: <INPUT TYPE=”TEXT” NAME=”name”>

Price: <INPUT TYPE=”TEXT” NAME=”price” SIZE=”7”>

<SELECT NAME=”currency”>

<OPTION VALUE=”eur”>Euros</OPTION>

<OPTION VALUE=”usd” SELECTED>Dollars</OPTION>

</SELECT>

<INPUT TYPE=”BUTTON” VALUE=”Create”

ONCLICK=”create(controls,xml)”>

<INPUT TYPE=”BUTTON” VALUE=”Clear”

ONCLICK=”resetAll(controls,xml)”>

<!-- there must be one character in the text area -->

<TEXTAREA NAME=”output” ROWS=”22” COLS=”70” READONLY>

</TEXTAREA>

</FORM>

<xml id=”xml”></xml>

</CENTER>

</BODY>

</HTML>

279Creating a New Document with DOM

E X A M P L E

11 2429 CH09 11/12/99 1:02 PM Page 279

Listing 9.5: JavaScript to Create a Document

function create(form,document)

{

var name = form.name.value,

price = form.price.value,

currency = form.currency.value,

output = form.output;

var topLevel = getTopLevel(document);

var elementProduct = document.createElement(“product”);

elementName = document.createElement(“name”),

elementPrice = document.createElement(“price”);

elementPrice.setAttribute(“currency”,currency);

var text = document.createTextNode(name);

elementName.appendChild(text);

text = document.createTextNode(price);

elementPrice.appendChild(text);

elementProduct.appendChild(elementName);

elementProduct.appendChild(elementPrice);

topLevel.appendChild(elementProduct);

output.value = “”;

output.value = document.xml;

}

function getTopLevel(document)

{

var topLevel = document.documentElement;

if(topLevel == null)

{

topLevel = document.createElement(“products”);

document.appendChild(topLevel);

280 Chapter 9: Writing XML

11 2429 CH09 11/12/99 1:02 PM Page 280

}

return topLevel;

}

function resetAll(form,document)

{

var topLevel = document.documentElement;

document.removeChild(topLevel);

var output = form.output;

output.value = “”;

}

To create a new element in the XML document, the user enters the product
name and prices in dollars and in Euros and presses the Create button. The
result is available in the text area. Figure 9.2 shows the result in a
browser.

281Creating a New Document with DOM

Figure 9.2: The application in a browser

Creating Nodes
The following application simply creates new DOM objects and inserts
them in the document tree. It takes care to insert the new elements in the
appropriate order. Except that there are more elements to create, this
process is very similar to modifying an existing document.

O U T P U T

E X A M P L E

11 2429 CH09 11/12/99 1:02 PM Page 281

function create(form,document)

{

var name = form.name.value,

price = form.price.value,

currency = form.currency.value,

output = form.output;

var topLevel = getTopLevel(document);

var elementProduct = document.createElement(“product”);

elementName = document.createElement(“name”),

elementPrice = document.createElement(“price”);

elementPrice.setAttribute(“currency”,currency);

var text = document.createTextNode(name);

elementName.appendChild(text);

text = document.createTextNode(price);

elementPrice.appendChild(text);

elementProduct.appendChild(elementName);

elementProduct.appendChild(elementPrice);

topLevel.appendChild(elementProduct);

output.value = “”;

output.value = document.xml;

}

Creating the Top-Level Element
Initially the Document is empty. The application must create the top-level
element in the getTopLevel() function. Upon first call, it creates a top-level
element. On subsequent invocations, it returns the top-level element.
function getTopLevel(document)

{

var topLevel = document.documentElement;

if(topLevel == null)

282 Chapter 9: Writing XML

E X A M P L E

11 2429 CH09 11/12/99 1:02 PM Page 282

{

topLevel = document.createElement(“products”);

document.appendChild(topLevel);

}

return topLevel;

}

Note that the top-level element is a child of the Document so it is added to
the document tree with appendChild(). The only difference is that there is
only one document element. Calling appendChild() with two different
Elements results in an error.

Using DOM to Create Documents
It is very easy to create or modify XML documents with DOM. The parser
creates a Document object and you can use it to add (or modify) objects to the
document tree.

The main advantage to using DOM is the same reason you use a parser in
the first place: It shields the application from the XML syntax.

The parser also enforces syntactical rules: It accepts only one element at
the top level. Unfortunately, DOM level 1 does not support DTDs; therefore,
it is not possible to force the parser to validate a document as it is being
created. Hopefully, DOM level 2 will make this possible.

On the downside, the application has to explicitly create the DOM tree for
the document. As always, it is inefficient if the application already has its
own data structure. In this case, it might be more efficient to skip DOM
and write the XML document directly from the application’s own data
structure.

Creating Documents Without DOM
It is not difficult to write XML documents without the help of a parser/
generator. The core syntax (which is what most applications use) is not
complex.

Listings 9.6 and 9.7 show an application that manages a list of products in
an HTML form. Users can add or remove products from the list. The appli-
cation has its own data structure, but it can export the list in XML.

283Creating Documents Without DOM

E X A M P L E

11 2429 CH09 11/12/99 1:02 PM Page 283

Listing 9.6: The HTML Form

<HTML>

<HEAD>

<TITLE>Price List Editor</TITLE>

<SCRIPT LANGUAGE=”JavaScript” SRC=”createlist.js”></SCRIPT>

</HEAD>

<BODY>

<CENTER>

<!-- NAME works with Netscape & IE -->

<FORM NAME=”controls”>

Product name: <INPUT TYPE=”TEXT” NAME=”name”>

Price (Dollars): <INPUT TYPE=”TEXT”

NAME=”dollarsamount” SIZE=”7”>

Price (Euros): <INPUT TYPE=”TEXT”

NAME=”eurosamount” SIZE=”7”>

<SELECT NAME=”productlist” SIZE=”5” WIDTH=”250”>

</SELECT>

<INPUT TYPE=”BUTTON” VALUE=”Add”

ONCLICK=”addProduct(controls)”>

<INPUT TYPE=”BUTTON” VALUE=”Delete”

ONCLICK=”deleteProduct(controls)”>

<INPUT TYPE=”BUTTON” VALUE=”Export to XML”

ONCLICK=”exportProduct(controls)”>

<INPUT TYPE=”BUTTON” VALUE=”Clear”

ONCLICK=”output.value=’’”>

<!-- there must be one character in the text area -->

<TEXTAREA NAME=”output” ROWS=”12” COLS=”50” READONLY>

</TEXTAREA>

</FORM>

</CENTER>

</BODY>

</HTML>

Listing 9.7: The JavaScript Code

var products = new Array();

function addProduct(form)

{

// collects data from the form

284 Chapter 9: Writing XML

11 2429 CH09 11/12/99 1:02 PM Page 284

var name = form.name.value,

dollars = form.dollarsamount.value,

euros = form.eurosamount.value,

productList = form.productlist;

// creates the various objects required

var dollarsPrice = new Price(dollars,”usd”),

eurosPrice = new Price(euros,”eur”),

prices = new Array(dollarsPrice,eurosPrice),

product = new Product(name,prices);

// arrays are zero-based so products.length points

// to one past the latest product

// JavaScript automatically allocates memory

var pos = products.length;

products[pos] = product;

var option = new Option(name,pos);

productList.options[productList.length] = option;

}

function deleteProduct(form)

{

var productList = form.productlist,

pos = productList.selectedIndex;

if(pos != -1)

{

var product = productList.options[pos].value;

productList.options[pos] = null;

products[product] = null;

}

}

function exportProduct(form)

{

285Creating Documents Without DOM

continues

11 2429 CH09 11/12/99 1:02 PM Page 285

form.output.value = makeXML();

}

function send()

{

var http = new ActiveXObject(“Microsoft.XMLHTTP”);

http.open(“POST”,”http://catwoman.pineapplesoft.com/Dump”,false);

http.setRequestHeader(“Content-type”,”application/xml”);

http.send(“value=” + makeXML());

document.open();

document.write(http.responseText);

}

function makeXML()

{

var xmlCode = “”;

var i;

for(i = 0;i < products.length;i++)

if(products[i] != null)

xmlCode += products[i].toXML();

return element(“products”,””,xmlCode);

}

function resetAll(form,document)

{

priceList = null;

form.output.value = “”;

}

function element(name,attributes,content)

{

var result = “<” + name;

if(attributes != “”)

result += “ “ + attributes;

result += “>”;

286 Chapter 9: Writing XML

Listing 9.6: continued

11 2429 CH09 11/12/99 1:02 PM Page 286

result += content;

result += “</” + name + “>\r”;

return result;

}

function escapeXML(string)

{

var result = “”,

i,

c;

for(i = 0;i < string.length;i++)

{

c = string.charAt(i);

if(c == ‘<’)

result += “<”;

else if(c == ‘&’)

result += “&”;

else

result += c;

}

return result;

}

// declares two JavaScript objects

// product object

function Product(name,prices)

{

this.name = name;

this.prices = prices;

this.toXML = product_toXML;

}

function product_toXML()

{

var result = element(“name”,””,escapeXML(this.name)),

287Creating Documents Without DOM

continues

11 2429 CH09 11/12/99 1:02 PM Page 287

i;

for(i = 0;i < this.prices.length;i++)

result += this.prices[i].toXML();

return element(“product”,””,result);

}

// price object

function Price(amount,currency)

{

this.amount = amount;

this.currency = currency;

this.toXML = price_toXML;

}

function price_toXML()

{

return element(“price”,

“currency=\”” + this.currency + “\””,

escapeXML(this.amount));

}

Because this application does not use DOM, it works with browsers that
have no XML support (obviously, they need to support JavaScript), such as
Netscape 4. Figure 9.3 shows the result in Netscape.

A Non-DOM Data Structure
This application is radically different from the other applications intro-
duced in this chapter. Internally, the application does not use XML, but
uses its own data structure instead. In other words, it does not create
Element objects; it creates Product and Price JavaScript objects.

In JavaScript, an object constructor is simply a function that sets the object
properties. A method is a property that is assigned a function.

288 Chapter 9: Writing XML

Listing 9.6: continued

O U T P U T

11 2429 CH09 11/12/99 1:02 PM Page 288

Figure 9.3: The result in Netscape

In this example, the constructor for Product declares two properties (name
and prices) and one method (toXML).
function Product(name,prices)

{

this.name = name;

this.prices = prices;

this.toXML = product_toXML;

}

These objects are created with the new operator like built-in JavaScript
objects:
var product = new Product(name,prices);

JavaScript objects are used like built-in objects:
xmlCode += products[i].toXML();

Writing XML
The Product and Price objects are XML-aware because they know how to
save (serialize) themselves as XML objects through the toXML() function.
The makeXML() function is trivial: It iterates over the list of products calling
the toXML() function. It wraps the result in a products element:
function makeXML()

{

var xmlCode = “”;

289Creating Documents Without DOM

E X A M P L E

11 2429 CH09 11/12/99 1:02 PM Page 289

var i;

for(i = 0;i < products.length;i++)

if(products[i] != null)

xmlCode += products[i].toXML();

return element(“products”,””,xmlCode);

}

Notice that this approach is recursive. Product implements its toXML()
method partly by serializing the list of Price and wrapping it in a product
element.
function product_toXML()

{

var result = element(“name”,””,escapeXML(this.name)),

i;

for(i = 0;i < this.prices.length;i++)

result += this.prices[i].toXML();

return element(“product”,””,result);

}

function price_toXML()

{

return element(“price”,

“currency=\”” + this.currency + “\””,

escapeXML(this.amount));

}

XML is a convenient format because elements can nest in a way that is
very similar to how objects are referenced by other objects.

Hiding the Syntax
This application needs to know very little about the XML syntax. Its knowl-
edge is completely encapsulated in two functions—element() and
escapeXML().

1. element() is in charge of the tagging. Again, the core XML syntax
function is simple and it shows in this function.

function element(name,attributes,content)

{

var result = “<” + name;

290 Chapter 9: Writing XML

E X A M P L E

11 2429 CH09 11/12/99 1:02 PM Page 290

if(attributes != “”)

result += “ “ + attributes;

result += “>”;

result += content;

result += “</” + name + “>\r”;

return result;

}

2. escapeXML() ensures that the angle bracket and ampersand characters
are escaped. These characters are not allowed in the text of an ele-
ment.

function escapeXML(string)

{

var result = “”,

i,

c;

for(i = 0;i < string.length;i++)

{

c = string.charAt(i);

if(c == ‘<’)

result += “<”;

else if(c == ‘&’)

result += “&”;

else

result += c;

}

return result;

}

Creating Documents from Non-XML Data Structures
For most applications, it is easy to write an XML generator. Indeed,
the core XML syntax (essentially composed of tags) is not complex.
Furthermore, XML elements nest in a way that is very convenient for
object-oriented applications.

Typically, creating documents from non-XML data structures is more effi-
cient than the DOM-based approach because the application doesn’t have to
duplicate its data structure. Figure 9.4 compares the two approaches.

291Creating Documents from Non-XML Data Structures

E X A M P L E

11 2429 CH09 11/12/99 1:02 PM Page 291

T I P
So, when do you use DOM and when do you write your own generator? I find that
DOM is ideal for modifying existing documents. In most other cases, I prefer my own
generator.

292 Chapter 9: Writing XML

Figure 9.4: Comparing DOM with an ad hoc generator

Doing Something with the XML Documents
Now that you can create XML documents, you probably want to do some-
thing more involved than display the XML code in an HTML form. In most
cases, the application can either save the document to a file or send it to a
server.

✔ This section looks briefly at your options to save the document or send it to the server.

We will revisit this topic in Chapter 12, “Putting It All Together: An e-Commerce Example,”

(page 381).

Sending the Document to the Server
There are two options to send the document to the server. You can place the
XML document in an HTML form and have it sent along with the form, you
can use a JavaBean or an ActiveX control to post the XML document to the
Web server.

1. Sending the XML document in a form is the most portable approach.
Because you already create the XML document in a form, this is easy
to do. The FORM tag needs an ACTION attribute and the INPUT field must
be changed from BUTTON to SUBMIT. You might also want to change the
TEXTAREA in a HIDDEN field so XML does not appear onscreen:

11 2429 CH09 11/12/99 1:02 PM Page 292

Listing 9.8: HTML Form to Send the Document

<FORM NAME=”controls” ACTION=”/Dump” METHOD=”POST”>

Product name: <INPUT TYPE=”TEXT” NAME=”name”>

Price (Dollars): <INPUT TYPE=”TEXT”

NAME=”dollarsamount” SIZE=”7”>

Price (Euros): <INPUT TYPE=”TEXT”

NAME=”eurosamount” SIZE=”7”>

<SELECT NAME=”productlist” SIZE=”5” WIDTH=”250”>

</SELECT>

<INPUT TYPE=”BUTTON” VALUE=”Add”

ONCLICK=”addProduct(controls)”>

<INPUT TYPE=”BUTTON” VALUE=”Delete”

ONCLICK=”deleteProduct(controls)”>

<INPUT TYPE=”SUBMIT” VALUE=”Send in XML”

ONCLICK=”exportProduct(controls)”>

<INPUT TYPE=”BUTTON” VALUE=”Clear”

ONCLICK=”output.value=’’”>

<!-- there must be one character in the text area -->

<INPUT TYPE=”HIDDEN” NAME=”output” VALUE=””>

</FORM>

The Web server will receive the XML document in a parameter called “out-
put.” You would have to write a servlet or a CGI script to retrieve the docu-
ment on the Web server. The beauty of this approach is that the document
is returned in a form so the servlet simply accesses form parameters to
retrieve the XML document.

✔ The section “Viewer and Editor” in Chapter 12 (page 444) shows such a servlet.

C A U T I O N
This example uses the Dump service that comes standard with Jetty, the Web server.
Dump replies with a document that contains whatever it originally received. It is conve-
nient for testing.

If you don’t use Jetty, you will need to write your own servlet to accept the XML docu-
ment.

✔ The section “Servlet Engine” in Appendix A explains how to install Jetty (page 460).

Alternatively, you can post the data directly to the Web server, without
going through a form. This method has the added benefit of not changing
the current page. However, you have to go through an ActiveX object

293Doing Something with the XML Documents

11 2429 CH09 11/12/99 1:02 PM Page 293

(Internet Explorer), a plug-in (all browsers), or a JavaBean (all browsers,
all platforms).

2. Internet Explorer 5.0 ships with XMLHTTP, an ActiveX control that
can send XML documents from JavaScript. Listing 9.9 shows how to
use XMLHTTP.

Listing 9.9: Posting the Result on a Web Site

function send()

{

var http = new ActiveXObject(“Microsoft.XMLHTTP”);

http.open(“POST”,”http://catwoman.pineapplesoft.com/Dump”,false);

http.setRequestHeader(“Content-type”,”application/xml”);

http.send(makeXML());

document.open();

document.write(http.responseText);

}

The ActiveX object has the following methods:

• open(protocol,url,asynchronous) connects to a url. Set the protocol
to POST. Set asynchronous to false to send synchronously.

• setRequestHeader(keyword,value) adds a new keyword in the header of
the document; you must use this function to set the content-type.

• send(data) posts the data to the server.

You need to change the “Send in XML” button in Listing 9.9 to call this
function:
<INPUT TYPE=”SUBMIT” VALUE=”Send in XML” ONCLICK=”send()”>

Again, you need a servlet or CGI script on the server to receive the XML
document.

The URL http://catwoman.pineapplesoft.com/Dump points the Dump ser-
vice on my machine. You will need to change this URL to your Web server.
Listing 9.10 is a typical response from the server.

T I P
Jetty’s Dump returns an HTML document that contains the POST parameters. Choose
“View Source” in your browser options to see the XML document.

Listing 9.10: XML Document Returned by the Server

<products><product><name>XML Editor</name>

<price currency=”usd”>499.00</price>

<price currency=”eur”>475.00</price>

294 Chapter 9: Writing XML

E X A M P L E

O U T P U T

11 2429 CH09 11/12/99 1:02 PM Page 294

</product>

<product><name>DTD Editor</name>

<price currency=”usd”>199.00</price>

<price currency=”eur”>190</price>

</product>

<product><name>XML Book</name>

<price currency=”usd”>19.99</price>

<price currency=”eur”>19.00</price>

</product>

<product><name>XML Training</name>

<price currency=”usd”>699.00</price>

<price currency=”eur”>666.00</price>

</product>

</products>

Saving the Document
JavaScript applications cannot access the local hard disk unless they have
been signed. Therefore, it is not common to save the XML in a file on a
browser.

However, on the server, you often want to save XML documents. If you cre-
ated the file with your own generator, you save it like any other file.

When creating a document with a Microsoft DOM parser, you use a
Microsoft-specific extension to save the document. Microsoft parser sup-
ports the save() function.

However, as I have just explained, this extension does not work on the
browser. It is therefore only useful when writing CGI scripts or ASP pages.
The example in Listing 9.11 shows how to save a file from JavaScript in an
ASP server.
Listing 9.11: Saving the XML Document

<%

var xmldoc = new ActiveXObject(“Microsoft.XMLDOM”);

// creates the XML document here

// ...

xmldoc.save(Server.MapPath(“request.xml”));

%>

295Doing Something with the XML Documents

11 2429 CH09 11/12/99 1:02 PM Page 295

N O T E
To create an XML parser from ASP, you cannot use an XML island. Instead create the
XML parser directly as an ActiveXObject as in

var xmldoc = new ActiveXObject(“Microsoft.XMLDOM”);

This is equivalent to creating an XML island on a browser.

Writing with Flexibility in Mind
One of the major advantages of XML is that it is extensible. Anyone can
create a tagging language with tags specific to the application.

On the other hand, it means applications must be able to support different
DTDs. For example, your company can have its own DTDs for internal
exchange. However, when exchanging documents with other companies, you
may have to use another DTD.

There are also so-called standard DTDs developed by various standardiza-
tion committees. In fact, developing DTDs has become a favorite activity in
standard bodies lately, so expect more in the future. Unfortunately, so many
committees are actively developing standards that you may have to support
several incompatible standards.

There are essentially two solutions to this problem. Either you define sev-
eral toXML() functions, one for each DTD that you want to support, or you
turn to XSLT.

In most cases, I would advocate using XSLT. It is a waste of time to write
as many functions as there are DTDs. XSLT is also more flexible because
you don’t have to write code to add new DTDs or when a DTD changes (and
it happens more often than you might think).

Supporting Several DTDs with XSLT
Listings 9.12 and 9.13 show how to use XSLT to support several DTDs.
The user chooses the DTD from a list box. Unlike the previous version, this
version uses the XSL processor of Internet Explorer. It will not run on
Netscape.

T I P
If you need to support both browsers, you can replace the Internet Explorer XSL proces-
sor with LotusXSL.

LotusXSL comes with several examples that show how to use it in a browser. However,
it is not as stable as using the built-in XSL processor. If at all possible, stick to Internet
Explorer.

296 Chapter 9: Writing XML

E X A M P L E

11 2429 CH09 11/12/99 1:02 PM Page 296

Listing 9.12: The HTML Code

<HTML>

<HEAD>

<TITLE>Price List Editor</TITLE>

<SCRIPT LANGUAGE=”JavaScript” SRC=”createlist.js”></SCRIPT>

</HEAD>

<BODY>

<CENTER>

<FORM NAME=”controls”>

Product name: <INPUT TYPE=”TEXT” NAME=”name”>

Price (Dollars): <INPUT TYPE=”TEXT”

NAME=”dollarsamount” SIZE=”7”>

Price (Euros): <INPUT TYPE=”TEXT”

NAME=”eurosamount” SIZE=”7”>

<SELECT NAME=”productlist” SIZE=”5” WIDTH=”250”>

</SELECT>

<INPUT TYPE=”BUTTON” VALUE=”Add”

ONCLICK=”addProduct(controls)”>

<INPUT TYPE=”BUTTON” VALUE=”Delete”

ONCLICK=”deleteProduct(controls)”>

<INPUT TYPE=”BUTTON” VALUE=”Export to XML”

ONCLICK=”exportProduct(controls,xml,xslt)”>

<SELECT NAME=”format”>

<OPTION VALUE=”default” SELECTED>products</OPTION>

<OPTION VALUE=”external”>price-list</OPTION>

</SELECT>

<INPUT TYPE=”BUTTON” VALUE=”Clear”

ONCLICK=”output.value=’’”>

<!-- there must be one character in the text area -->

<TEXTAREA NAME=”output” ROWS=”12” COLS=”50” READONLY>

</TEXTAREA>

</FORM>

</CE_TER>

<xml id=”xml”></xml>

<xml id=”xslt” src=”convert.xsl”></xml>

</BODY>

</HTML>

297Writing with Flexibility in Mind

11 2429 CH09 11/12/99 1:02 PM Page 297

Listing 9.13: The JavaScript Code

var products = new Array();

function addProduct(form)

{

// collects data from the form

var name = form.name.value,

dollars = form.dollarsamount.value,

euros = form.eurosamount.value,

productList = form.productlist;

// creates the various objects required

var dollarsPrice = new Price(dollars,”usd”),

eurosPrice = new Price(euros,”eur”),

prices = new Array(dollarsPrice,eurosPrice),

product = new Product(name,prices);

// arrays are zero-based so products.length points

// to one past the latest product

// JavaScript automatically allocates memory

var pos = products.length;

products[pos] = product;

var option = new Option(name,pos);

productList.options[productList.length] = option;

}

function deleteProduct(form)

{

var productList = form.productlist,

pos = productList.selectedIndex;

if(pos != -1)

{

var product = productList.options[pos].value;

productList.options[pos] = null;

products[product] = null;

298 Chapter 9: Writing XML

11 2429 CH09 11/12/99 1:02 PM Page 298

}

}

function exportProduct(form,xml,xslt)

{

var selected = form.format.selectedIndex,

format = form.format.options[selected].value;

if(format == “default”)

form.output.value = makeXML();

else

{

var xmlDoc = makeXML();

xml.async = false;

// passes an XML string to the parser

xml.loadXML(xmlDoc);

form.output.value = xml.transformNode(xslt.XMLDocument);

}

}

function send()

{

var http = new ActiveXObject(“Microsoft.XMLHTTP”);

http.open(“POST”,”http://catwoman.pineapplesoft.com/Dump”,false);

http.setRequestHeader(“Content-type”,”application/xml”);

http.send(“value=” + makeXML());

document.open();

document.write(http.responseText);

}

function makeXML()

{

var xmlCode = “”;

var i;

for(i = 0;i < products.length;i++)

if(products[i] != null)

299Writing with Flexibility in Mind

continues

11 2429 CH09 11/12/99 1:02 PM Page 299

xmlCode += products[i].toXML();

return element(“products”,””,xmlCode);

}

function resetAll(form,document)

{

priceList = null;

form.output.value = “”;

}

function element(name,attributes,content)

{

var result = “<” + name;

if(attributes != “”)

result += “ “ + attributes;

result += “>”;

result += content;

result += “</” + name + “>\r”;

return result;

}

function escapeXML(string)

{

var result = “”,

i,

c;

for(i = 0;i < string.length;i++)

{

c = string.charAt(i);

if(c == ‘<’)

result += “<”;

else if(c == ‘&’)

result += “&”;

else

result += c;

}

300 Chapter 9: Writing XML

Listing 9.13: continued

11 2429 CH09 11/12/99 1:02 PM Page 300

return result;

}

// declares two JavaScript objects

// product object

function Product(name,prices)

{

this.name = name;

this.prices = prices;

this.toXML = product_toXML;

}

function product_toXML()

{

var result = element(“name”,””,escapeXML(this.name)),

i;

for(i = 0;i < this.prices.length;i++)

result += this.prices[i].toXML();

return element(“product”,””,result);

}

// price object

function Price(amount,currency)

{

this.amount = amount;

this.currency = currency;

this.toXML = price_toXML;

}

function price_toXML()

{

return element(“price”,

“currency=\”” + this.currency + “\””,

this.amount);

}

301Writing with Flexibility in Mind

11 2429 CH09 11/12/99 1:02 PM Page 301

The application outputs a default XML format. The style sheet in Listing
9.14 does the conversion. Obviously, it is an Internet Explorer style sheet.
As explained in Chapter 5, “XSL Transformation,” this style sheet is not
strictly compliant with the standard but it would not take too much work
to adapt it.
Listing 9.14: The Style Sheet

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!-- I.E. 5.0 style sheet: no built-in rule and old URI-->

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/TR/WD-xsl”>

<xsl:template match=”/”>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match=”products”>

<price-list>

<xsl:apply-templates/>

</price-list>

</xsl:template>

<xsl:template match=”product”>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match=”price”>

<line>

<xsl:attribute name=”name”><xsl:value-of select=”../name”/>
➥</xsl:attribute>

<xsl:attribute name=”price”><xsl:value-of select=”.”/>

➥</xsl:attribute>

<xsl:attribute name=”currency”>

➥<xsl:value-of select=”@currency”/></xsl:attribute>

</line>

</xsl:template>

</xsl:stylesheet>

302 Chapter 9: Writing XML

11 2429 CH09 11/12/99 1:02 PM Page 302

Figures 9.5 and 9.6 illustrate the difference between the two DTDs. Figure
9.5 is the structure created so far—it is a complex structure with several
levels of nesting. Figure 9.6, on the other hand, has a flat structure.

303Writing with Flexibility in Mind

Figure 9.5: The default structure Figure 9.6: The new structure

Figures 9.7 and 9.8 show the difference when selecting one or the other out-
put format in the browser.

O U T P U T

Figure 9.7: Default output format Figure 9.8: New output format

Calling XSLT
The major difference between this application and the previous one is the
exportProduct() function. exportProduct() calls makeXML() to generate the
XML document. Depending on the user choice, it may apply an XSLT style
sheet to the result.
function exportProduct(form,xml,xslt)

{

var selected = form.format.selectedIndex,

format = form.format.options[selected].value;

if(format == “default”)

form.output.value = makeXML();

E X A M P L E

11 2429 CH09 11/12/99 1:02 PM Page 303

else

{

var xmlDoc = makeXML();

xml.async = false;

// passes an XML string to the parser

xml.loadXML(xmlDoc);

form.output.value = xml.transformNode(xslt.XMLDocument);

}

}

Unfortunately, the DOM standard does not specify how to apply an XSLT
style sheet to a document. Again, you can use a browser-specific extension.
For Internet Explorer, the XSL processor is called by the transformNode()
method.

The XSLT style sheet was loaded in a separate XML island.
<xml id=”xml”></xml>

<xml id=”xslt” src=”convert.xsl”></xml>

Which Structure for the Document?
If your application supports several DTDs, you may wonder which one to
use as the default DTD. Experience shows that it pays to be dumb when
designing this default DTD.

I like to define a DTD that is very similar to my object structure. So, if the
application has Product and Price objects, I create two elements: product
and price.

There are two main advantages to designing a DTD that is close to the
internal data structure:

• It is easy to generate the XML document.

• The resulting document is as expressive as the internal data struc-
ture.

XSLT Versus Custom Functions
XSLT has been designed specifically to convert XML documents. It offers a
simple solution to cleanly separate the DTD from the application code. This
separation of roles offers many advantages:

• If the format changes, you don’t have to change your application, only
the style sheet.

304 Chapter 9: Writing XML

11 2429 CH09 11/12/99 1:02 PM Page 304

• Somebody else can write and maintain the style sheet while you con-
centrate on the application; this is a simple solution for separating
work in a team.

• After the system is in place, it’s easy to provide 5, 10, or 100 style
sheets.

• Conversely, you can deploy the application with only those few style
sheets the users really need. Therefore, the application loads faster.

N O T E
Work is underway to automate the development of the XSLT style sheet. See, for exam-
ple, XTransGen from IBM at www.alphaworks.ibm.com. This tool automatically gener-
ates the transformation between two documents following different DTDs.

What’s Next
The next chapter returns to modeling. Armed with a better understanding
of how to manipulate XML documents, you see how to create simple and
effective DTDs.

305What's Next

11 2429 CH09 11/12/99 1:02 PM Page 305

12 2429 CH10 2.29.2000 2:24 PM Page 306

10

Modeling for Flexibility
You are reaching the end of your tour of XML. In the previous chapters, you
learned not only the XML syntax but also how to manipulate XML. The
next two chapters are devoted to a real-life e-commerce application based
on XML.

In this chapter, you review some aspects of XML flexibility. In particular,
you revisit some concepts related to modeling documents. I hope the previ-
ous chapters have convinced you that XML is a flexible solution for many
applications.

You have already learned some of these topics in other chapters. This dis-
cussion consolidates previous discussions. More specifically, you learn

• how to take advantage of XML extensibility through XSL and other
standards

• about some standards under development by the W3C

• about warning signs that may point to problems in an XML document

• about the raging debate in the XML community: to attribute or to ele-
ment?

Structured and Extensible
As you learned in Chapter 1 and as you saw demonstrated in Chapters 2
through 9, XML focuses on the structure of documents. Unlike HTML, XML
encourages you to focus on the structure of the information. How you even-
tually use the document is derived from the structure. For example, presen-
tation is derived from the structure.

To support the structure, XML is extensible. In practice, it means that you
can define your own elements, tags, and attributes and decide how to com-
bine them.

12 2429 CH10 2.29.2000 2:24 PM Page 307

The challenge of making a successful XML application is to channel XML
extensibility in a positive way. There are two approaches to this challenge,
each with its own advantages and disadvantages:

• Limit XML extensibility.

• Build on XML extensibility as an essential part of the application.

This is the first choice to make when considering a new application. Where
should you limit XML extensibility or should you build it as an essential
part of the application? This chapter illustrates both cases.

Limiting XML Extensibility
1. One of the first popular applications on intranets was the address

book, and for a good reason. In a large organization, people change
jobs very often, or they simply move to another office.

Therefore, the phone list is rarely up-to-date. In some organizations, it
would require printing a new list every morning, which might not be an
option when the list is large.

By putting the information on an intranet, the maintenance and the distri-
bution of the list are simplified dramatically. To update the list, one simply
publishes a new version. And because it is Web-based, the new list is
instantaneously available to everybody.

To build such a list with XML, you can create a document similar to Listing
10.1.
Listing 10.1: A Phone List in XML

<?xml version=”1.0”?>

<phonelist>

<person>

<fname>Bill</fname><lname>Allen</lname>

<extension>103</extension>

<email>ballen@emailaholic.com</email>

</person>

<person>

<fname>John</fname><lname>Doe</lname>

<extension>101</extension>

<email>jdoe@emailaholic.com</email>

</person>

<person>

<fname>Peter</fname><lname>Fill</lname>

<extension>105</extension>

308 Chapter 10: Modeling for Flexibility

E X A M P L E

12 2429 CH10 2.29.2000 2:24 PM Page 308

<email>pfill@emailaholic.com</email>

</person>

<person>

<fname>Tim</fname><lname>Martin</lname>

<extension>104</extension>

<email>tmartin@emailaholic.com</email>

</person>

<person>

<fname>Jack</fname><lname>Smith</lname>

<extension>102</extension>

<email>jsmith@emailaholic.com</email>

</person>

</phonelist>

You publish the list using the same techniques used in Chapter 5, “XSL
Transformation,” to publish the newsletter. Listing 10.2 illustrates what the
style sheet might look like.
Listing 10.2: The Style Sheet for the Phone List

<?xml version=”1.0”?>

<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”

xmlns=”http://www.w3.org/TR/REC-html40”>

<xsl:output method=”html”/>

<xsl:template match=”/”>

<HTML><HEAD><TITLE>Phone List</TITLE></HEAD>

<H1>Phone List:</H1>

<xsl:for-each select=”phonelist/person”>

<A><xsl:attribute

name=”HREF”>mailto:<xsl:value-of select=”email”/>

</xsl:attribute>

<xsl:value-of select=”fname”/><xsl:text> </xsl:text>

<xsl:value-of select=”lname”/>

Extension: <xsl:value-of select=”extension”/>

</xsl:for-each>

<P>Please help us maintain the list,

email me

if you move!</P>

309Structured and Extensible

continues

12 2429 CH10 2.29.2000 2:24 PM Page 309

</HTML>

</xsl:template>

</xsl:stylesheet>

You invoke LotusXSL as in Chapter 5 with the command:
java –classpath

➥c:\lotusxsl\xerces.jar;c:\lotusxsl\lotusxsl.jar

➥com.lotus.xsl.Process

➥-in phonelist.xml

➥-xsl phonelist.xsl -out phonelist.html –html

The result, in a browser, is shown in Figure 10.1.

310 Chapter 10: Modeling for Flexibility

Listing 10.2: continued

E X A M P L E

Figure 10.1: The phone list in a browser

2. You might want to publish the same list on your organization’s Web
site. The list is not only available internally but also externally.
However, to limit attacks by spammers, many organizations choose
not to publish email addresses. Therefore, you would use a different
style sheet, such as the one shown in Listing 10.3.

Listing 10.3: Alternate Style Sheet

<?xml version=”1.0”?>

<xsl:stylesheet

E X A M P L E

12 2429 CH10 2.29.2000 2:24 PM Page 310

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”

xmlns=”http://www.w3.org/TR/REC-html40”>

<xsl:output method=”html”/>

<xsl:template match=”/”>

<HTML><HEAD><TITLE>Phone List</TITLE></HEAD>

<H1>Phone List</H1>

<P>Here are the direct numbers of our collaborators:</P>

<xsl:for-each select=”phonelist/person”>

<xsl:value-of select=”fname”/><xsl:text> </xsl:text>

<xsl:value-of select=”lname”/>

Tel.: 513-744-8<xsl:value-of select=”extension”/>

</xsl:for-each>

</HTML>

</xsl:template>

</xsl:stylesheet>

Figure 10.2 shows the result of applying this style sheet.

311Structured and Extensible

O U T P U T

Figure 10.2: The new list in a browser

12 2429 CH10 2.29.2000 2:24 PM Page 311

This simple example shows some of the benefits of maintaining the phone
list in XML:

• The same document can be reused in different contexts; in this case,
internal and external phone lists are produced with minimal effort.

• It is easy to change the presentation—just update the style sheet.

• Although not illustrated in the example, it is easy to maintain the list
using an off-the-shelf XML editor.

• As the list grows and special needs arise, it is possible to write special-
ized software (using DOM or SAX) to further manipulate the list.

• If the list grows dramatically, it is possible to move to an XML data-
base for better performance.

In other words, XML offers a high-quality off-the-shelf software application
that you can use to solve a problem quickly and inexpensively.

The phone list is a perfect example of an application that does not need
XML extensibility. The application is built around a specific DTD and the
structure is not expected to change much for the life of the application.

The phone list is typical of most XML applications. To work, it greatly lim-
its XML flexibility: A DTD is defined and data is made to fit it. It would not
make sense for somebody to extend the list in any way.

Building on XML Extensibility
1. Some applications need a more flexible solution than used in the pre-

vious example. In particular, it might be impossible (or very difficult)
to create one DTD for all the data. This is particularly true when sev-
eral organizations exchange information.

Let’s revisit the price comparison application from Chapter 8, “Alternative
API: SAX.” You will remember that the application finds the best price in
an XML document such as the one shown in Listing 10.4.
Listing 10.4: A Price List in XML

<?xml version=”1.0”?>

<product>

<name>XML Training</name>

<vendor>

<name>Playfield Training</name>

<price delivery=”5”>999.00</price>

<price delivery=”15”>899.00</price>

</vendor>

<vendor>

312 Chapter 10: Modeling for Flexibility

E X A M P L E

12 2429 CH10 2.29.2000 2:24 PM Page 312

<name>XMLi</name>

<price delivery=”3”>2999.00</price>

<price delivery=”30”>1499.00</price>

<price delivery=”45”>699.00</price>

</vendor>

<vendor>

<name>WriteIT</name>

<price delivery=”5”>799.00</price>

<price delivery=”15”>899.00</price>

</vendor>

<vendor>

<name>Emailaholic</name>

<price delivery=”1”>1999.00</price>

</vendor>

</product>

✔ The BestDeal application introduced in Chapter 8 compares prices and finds that XMLi

delivers the cheapest training available in fewer than five days (page 231).

A price comparison agent such as BestDeal is really interesting when it is
made available through the Internet.

The agent collects pricing information from various merchants and instan-
taneously computes the best deal for specific users. However, it is unlikely
that merchants will want to contribute their price lists unless they receive
some sort of promotion for doing so.

2. It would therefore make sense, at the minimum, to publish the list of
merchants with links or additional information on the Web site.

Traditionally (without XML), this would require a fixed template that the
merchants would need to fill in. For example, they could include their
address or other useful information. The fixed template would look like
Listing 10.5. However, you can do better thanks to XML’s flexibility.
Listing 10.5: Price List with Merchant Information

<?xml version=”1.0”?>

<product>

<name>XML Training</name>

<vendor>

<name>Playfield Training</name>

<price delivery=”5”>999.00</price>

313Structured and Extensible

E X A M P L E

12 2429 CH10 2.29.2000 2:24 PM Page 313

<price delivery=”15”>899.00</price>

<info>For more information call John Doe.</info>

</vendor>

<vendor>

<name>XMLi</name>

<price delivery=”3”>2999.00</price>

<price delivery=”30”>1499.00</price>

<price delivery=”45”>699.00</price>

<info>XMLi is a specialist for XML training.

Our staff has extensive practical experience.</info>

</vendor>

<vendor>

<name>WriteIT</name>

<price delivery=”5”>799.00</price>

<price delivery=”15”>899.00</price>

<info>We have been rated top-class by

independent studies.</info>

</vendor>

<vendor>

<name>Emailaholic</name>

<price delivery=”1”>1999.00</price>

<info>We are the fastest on the market!</info>

</vendor>

</product>

3. The main limitation in Listing 10.5 is that merchants have to fit their
data into the common mold. But this need not be the case. XML
stands for extensible markup language so why not take advantage of
its extensibility?

Listing 10.6 shows a document that a merchant might submit. To describe
its services, the merchant has introduced new elements. The merchant can
therefore create elements specifically to describe its products. To differenti-
ate its elements from the common elements, the merchant uses a name-
space.
Listing 10.6: Playfield Training Price List

<vendor>

<name>Playfield Training</name>

<price delivery=”5”>999.00</price>

<price delivery=”15”>899.00</price>

314 Chapter 10: Modeling for Flexibility

Listing 10.5: continued

E X A M P L E

12 2429 CH10 2.29.2000 2:24 PM Page 314

<pt:contact

xmlns:pt=”http://www.playfield.com/product/1.0”>

<pt:name>John Doe</pt:name>

<pt:tel>513-744-8889</pt:tel>

<pt:email>jdoe@playfield.com</pt:email>

</pt:contact>

</vendor>

Each merchant submits a price list similar to Listing 10.6 and the various
price lists are combined into a larger document (see Listing 10.7). Each
merchant has extended the list with its own tags, in its own namespace.
Listing 10.7: Price List with Merchant-Specific Information

<?xml version=”1.0”?>

<product>

<name>XML Training</name>

<vendor>

<name>Playfield Training</name>

<price delivery=”5”>999.00</price>

<price delivery=”15”>899.00</price>

<pt:contact

xmlns:pt=”http://www.playfield.com/product/1.0”>

<pt:name>John Doe</pt:name>

<pt:tel>513-744-8889</pt:tel>

<pt:email>jdoe@playfield.com</pt:email>

</pt:contact>

</vendor>

<vendor>

<name>XMLi</name>

<price delivery=”3”>2999.00</price>

<price delivery=”30”>1499.00</price>

<price delivery=”45”>699.00</price>

<xi:description xmlns:xi=”http://www.xmli.com/vendor/1.5”>

XMLi is a specialist for XML training.

Our staff has extensive practical experience.

</xi:description>

</vendor>

<vendor>

<name>WriteIT</name>

315Structured and Extensible

continues

12 2429 CH10 2.29.2000 2:24 PM Page 315

<price delivery=”5”>799.00</price>

<price delivery=”15”>899.00</price>

<wi:rating xmlns:wi=”http://www.writeit.com/r/4.5”>

<wi:p><wi:img

href=”http://www.psol.com/images/writeit.gif”/>

We have been rated <wi:b>top-class</wi:b> by

independent studies.</wi:p>

</wi:rating>

</vendor>

<vendor>

<name>Emailaholic</name>

<price delivery=”1”>1999.00</price>

<em:description

xmlns:em=”http://www.emailaholic.com/description/1.5”>

<em:p>We are the fastest on the market!</em:p>

<em:p>Learn XML today!</em:p>

<em:url>http://www.emailaholic.com</em:url>

</em:description>

</vendor>

</product>

There are two things remarkable about Listing 10.7:

• It still works with the BestDeal application from Chapter 8,
“Alternative API: SAX,” because it includes all the information
required in the appropriate format.

• It includes additional information in the format that the merchants
chose.

4. To publish this list, you need an XSLT style sheet. However, the style
sheet must cope with vendor-specific tags. The easiest solution is to
break the style sheet into vendor-specific style sheets and ask each
vendor to contribute a style sheet for its own tags.

Listing 10.8 is the style sheet for the first vendor, Playfield Training. It is
concerned only with Playfield’s elements.
Listing 10.8: Playfield Style Sheet

<?xml version=”1.0”?>

<xsl:stylesheet

xmlns:pt=”http://www.playfield.com/product/1.0”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”

316 Chapter 10: Modeling for Flexibility

Listing 10.7: continued

E X A M P L E

12 2429 CH10 2.29.2000 2:24 PM Page 316

xmlns=”http://www.w3.org/TR/REC-html40”

>

<xsl:template match=”pt:contact”>

<P>Contact: <xsl:value-of select=”pt:name”/>,

<I><xsl:value-of select=”pt:tel”/></I>,

<A><xsl:attribute name=”HREF”>mailto:<xsl:value-of

select=”pt:email”/></xsl:attribute>

<xsl:value-of select=”pt:email”/></P>

</xsl:template>

</xsl:stylesheet>

Similarly, the other vendors will supply style sheets for their elements. The
style sheets are shown in Listings 10.9, 10.10, and 10.11. Again, these style
sheets only support the merchant-specific elements.
Listing 10.9: XMLi Style Sheet

<?xml version=”1.0”?>

<xsl:stylesheet

xmlns:xi=”http://www.xmli.com/vendor/1.5”

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”

xmlns=”http://www.w3.org/TR/REC-html40”

>

<xsl:template match=”xi:description”>

<P><xsl:apply-templates/></P>

</xsl:template>

</xsl:stylesheet>

Listing 10.10: WriteIT Style Sheet

<?xml version=”1.0”?>

<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”

xmlns=”http://www.w3.org/TR/REC-html40”

xmlns:wi=”http://www.writeit.com/r/4.5”

>

317Structured and Extensible

continues

12 2429 CH10 2.29.2000 2:24 PM Page 317

<xsl:template match=”wi:p”>

<P><xsl:apply-templates/></P>

</xsl:template>

<xsl:template match=”wi:b”>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match=”wi:img”>

<xsl:attribute name=”SRC”><xsl:value-of

select=”@href”/></xsl:attribute>

</xsl:template>

</xsl:stylesheet>

Listing 10.11: Emailaholic Style Sheet

<?xml version=”1.0”?>

<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”

xmlns=”http://www.w3.org/TR/REC-html40”

xmlns:em=”http://www.emailaholic.com/description/1.5”

>

<xsl:template match=”em:description”>

<P>

<xsl:for-each select=”em:p”>

<xsl:value-of select=”.”/>

</xsl:for-each>

<A>

<xsl:attribute name=”HREF”>

<xsl:value-of select=”em:url”/>

</xsl:attribute>

<xsl:value-of select=”em:url”/>

</P>

</xsl:template>

</xsl:stylesheet>

318 Chapter 10: Modeling for Flexibility

Listing 10.10: continued

12 2429 CH10 2.29.2000 2:24 PM Page 318

Likewise, you also have a style sheet for the common elements. The mer-
chants need not provide this style sheet because, by definition, it is common
to all the vendors.

Listing 10.12 is the style sheet for common elements. Note that it includes
an <xsl:apply-templates/> to start recursive processing of the subele-
ments. This is required to ensure the subelements of product/vendor are
being processed according to the merchant style sheets.
Listing 10.12: Style Sheet for Common Elements

<?xml version=”1.0”?>

<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”

xmlns=”http://www.w3.org/TR/REC-html40”

>

<xsl:template match=”/”>

<HTML>

<HEAD><TITLE>

<xsl:value-of select=”product/name”/>

</TITLE></HEAD>

<BODY>

<xsl:for-each select=”product/vendor”>

<P><xsl:value-of select=”name”/></P>

<xsl:for-each select=”price”>

<xsl:value-of select=”.”/> (<xsl:value-of select=”@delivery”/>
➥days)

</xsl:for-each>

<xsl:apply-templates/>

<HR/>

</xsl:for-each>

</BODY>

</HTML>

</xsl:template>

<xsl:template match=”name | price”/>

</xsl:stylesheet>

The final style sheet combines all these elements into one, as illustrated in
Listing 10.13.

319Structured and Extensible

12 2429 CH10 2.29.2000 2:24 PM Page 319

Listing 10.13: Combining All the Style Sheets

<?xml version=”1.0”?>

<xsl:stylesheet

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”

xmlns=”http://www.w3.org/TR/REC-html40”>

<xsl:output method=”html”/>

<xsl:include href=”basic-product.xsl”/>

<xsl:include href=”playfield.xsl”/>

<xsl:include href=”xmli.xsl”/>

<xsl:include href=”writeit.xsl”/>

<xsl:include href=”emailaholic.xsl”/>

</xsl:stylesheet>

Copy the XML file from Listing 10.7 in a folder along with the various
vendor style sheets (Listing 10.8 to 10.13 inclusive). Use the following
filenames for the style sheets: playfield.xsl, xmli.xsl, writeit.xsl, emaila-
holic.xsl, basic-product.xsl and extended-product.xsl.

Use LotusXSL to apply extended-product.xsl to the XML document;
extended-product.xsl automatically loads the other style sheets. The result
from applying this combination of style sheets is shown in Figure 10.3.

Figure 10.4 illustrates how this application takes advantage of XML exten-
sibility. The price list contains common elements that are required by the
BestDeal application. The common elements are extended by the merchant
to include merchant-specific information.

Each party has total control over its extensions and can specify how the
extensions should be viewed—in this case, through a style sheet. In the
next two sections, you will see other examples of applications that are being
built with the same model.

320 Chapter 10: Modeling for Flexibility

O U T P U T

12 2429 CH10 2.29.2000 2:24 PM Page 320

Figure 10.3: The result in a browser

321Structured and Extensible

Figure 10.4: Application architecture

Lessons Learned
Most XML applications are similar to the phone list: There is one DTD that
fully specifies the document. There are one or more style sheets and poten-
tially other applications to process the document. The document is not
extended.

However, if the document is shared by different organizations, it may be
easier to adopt a more extensible approach, as illustrated by the price list
application.

Theoretically, it would have been possible to devise a common DTD to
accommodate the needs of all the merchants. In practice, however, this is a
difficult exercise because the common DTD must take into account differ-
ences in culture between the organizations.

12 2429 CH10 2.29.2000 2:24 PM Page 321

Furthermore, the merchants are competitors. In practice, trying to reach
agreement on anything but the most basic elements might degenerate into
a political fight.

Electronic Data Interchange (EDI) shows the limits of trying to build a uni-
versal data structure. The idea behind EDI is a promising one: A large
number of paper documents printed by computers are rekeyed at the
receiving site. Why not skip the paper?

In other words, your organization’s accounting package prints invoices. The
invoices are mailed to your customer, who reenters the information in his or
her accounting package. Likewise for orders, delivery instructions, tax dec-
larations, and checks. It would be more efficient to exchange the informa-
tion electronically.

EDI tried to remove the paper from the equation. To that effect, a number
of standards (X.12, UN/EDIFACT, Odette) were developed. These standards
specified a universal electronic format for administrative and business doc-
uments.

The only problem is the universality. To accommodate the business prac-
tices of all the companies in various countries is an immense task.
Remember that we are talking about different countries with radically dif-
ferent cultures and legislation.

In practice, the documents become so complex that people have to first sim-
plify them before they can use them. Worse, they often find that, despite all
the options, there are still missing elements. It is an endless fight for the
standard to keep up with evolution. It results in too much complexity.

As you can imagine, XML has raised considerable interest in relation to
EDI. One approach would be to publish simplified standards that would
include only the most common subset of elements. The documents could be
extended, using XML, to accommodate special needs.

In practice, this is exactly what you have just done with price lists, but on a
larger scale. There is a common core of information that is small enough so
it is easy to agree on the commonality. However, each party can extend the
core with elements in its own namespace.

XML combines the best of both worlds: commonality where it is practical
and extension or customization where it is required.

This raises many interesting questions. If each party can create its own ele-
ments, then how do you read them? One solution is to use a style sheet, as
we have just done, to describe how to render the new elements.

Another solution is to use the DTD to describe the new elements and their
structure. Several companies, including Microsoft, are working on mapper

322 Chapter 10: Modeling for Flexibility

12 2429 CH10 2.29.2000 2:24 PM Page 322

software. These mappers help you convert the DTD you received from a
partner in a format that makes sense for you.

There are many other aspects to XML/EDI. However, it is clear that XML
and EDI have a long way to go together. In 1997, I helped cofounding the
XML/EDI Group. If you are interested in this topic, I encourage you to visit
our Web site at www.xmledi.com.

XLink
Previous chapters have looked at some of the so-called companion XML
standards such as XSL, CSS, DOM, and SAX. There are others including
XLink and XPointer. XLink and XPointer are standards to express links
between XML documents.

This section introduces the basics of XLink. The goals are as follows:

• to illustrate how standards can be built on the basis of extensibility

• to give you an introduction to XLink, should you need to introduce
linking into your own documents

This section is not intended as a complete discussion of XLink.

C A U T I O N
At the time of this writing, the XLink standard is not final. Although the concepts seem
stable, it is possible that the published standard will differ significantly from the mater-
ial presented in this section.

The latest version of XLink is available from www.w3.org/TR/xlink.

XLink enables you to specify links between documents. It recognizes two
types of links:

• Simple links are similar to HTML links such as the anchor tag (<A>).

• Extended links make it possible to link several documents.

Simple Links
1. The simple link is familiar because it closely mimics the features of

HTML links. At its simplest, an XLink looks like
<xlink:simple xmlns:xlink=”http://www.w3.org/XML/XLink/0.9”

href=”http://www.pineapplesoft.com/newsletter”

role=”newsletter”

title=”Pineapplesoft Link”

show=”replace”

actuate=”user”>

Pineapplesoft Link, free newsletter

</xlink:simple>

323XLink

E X A M P L E

12 2429 CH10 2.29.2000 2:24 PM Page 323

As the example illustrates, the simple link is a specific element in the
XLink namespace. Browsers and other software recognize the xlink:simple
element.

XLink needs many attributes to offer the same richness as HTML links.
Some of these attributes are self-explanatory such as href, which is a URI.
title is equally easy—it is a description of the link. role is a generic string
that describes the function of the link’s content.

show and actuate are not so intuitive. In HTML, there are several types of
links. Take, for example:
Pineapplesoft

To activate the anchor element, the user must click it. When clicked, the
link will replace the current document with the link content (assuming that
frames are not used).

Conversely, the link in the image tag is immediately activated: The browser
downloads the image when it loads the page. Furthermore, the image is
integrated into the current document—it does not replace it.

show and actuate control the same behavior for XLink. The show attribute
can have the values new, parsed, and replace. new means the browser
should open a new window to display the link’s content. parsed means the
link’s content should be parsed and integrated in the current document.
replace means the browser should replace the current document with the
content of the link. replace is the default behavior for an HTML anchor.

The actuate attribute can take the value user or auto. user means that the
user must actively traverse the link whereas auto means the browser
should automatically traverse the link when the document is being loaded.

2. There is another form of the simple link whereby the link is inte-
grated into an existing element. Such a link is recognizable through
its attributes, which are part of the XLink namespace, as in

<resource xmlns:xlink=”http://www.w3.org/XML/XLink/0.9”

xlink:type=”simple”

xlink:href=”http://www.pineapplesoft.com/newsletter”

xlink:role=”newsletter”

xlink:title=”Pineapplesoft Link”

xlink:show=”replace”

xlink:actuate=”user”>

Pineapplesoft Link, free newsletter

</resource>

324 Chapter 10: Modeling for Flexibility

E X A M P L E

12 2429 CH10 2.29.2000 2:24 PM Page 324

This link also needs the type attribute to identify whether the link is a
simple link or an extended link.

T I P
To save typing, it is possible to associate default or fixed values with the attributes in
the DTD of the document. As you saw in the section “Standalone Documents” in
Chapter 3, using fixed attributes is not without problems. The following example illus-
trates how it works:

<?xml version=”1.0”?>

<!DOCTYPE references [

<!ELEMENT references (name,link)+>

<!ELEMENT name (#PCDATA)>

<!ELEMENT link EMPTY>

<!ATTLIST link

xmlns:xlink CDATA #FIXED “http://www.w3.org/XML/XLink/0.9”

xlink:type (simple) #FIXED “simple”

xlink:href CDATA #REQUIRED

xlink:role CDATA #IMPLIED

xlink:title CDATA #IMPLIED

xlink:show (new|parsed|replace) “replace”

xlink:actuate (user|auto) “user”>

]>

<references>

<name>Macmillan</name>

<link xlink:href=”http://www.mcp.com”/>

<name>Pineapplesoft Link</name>

<link xlink:href=”http://www.pineapplesoft.com/newsletter”/>

<name>XML.com</name>

<link xlink:href=”http://www.xml.com”/>

<name>Comics.com</name>

<link xlink:href=”http://www.comics.com”/>

<name>Fatbrain.com</name>

<link xlink:href=”http://www.fatbrain.com”/>

<name>ABC News</name>

<link xlink:href=”http://www.abcnews.com”/>

</references>

Beware that Internet Explorer 5.0 currently does not accept this notation. This is a
problem specific to Internet Explorer and it will probably be fixed in a future version.

325XLink

12 2429 CH10 2.29.2000 2:24 PM Page 325

Extended Links
Extended links are more powerful. Some of the most exciting features of
extended links include the capability to establish links between more than
two resources and the capability to establish links that do not reside in the
document.

The latter means that it is possible to maintain the links in a different doc-
ument. This is useful in at least two cases:

• It is possible to store all the links from a Web site in a single, central
document. This should simplify maintenance of the links (because
there is only one document to search when a link must be updated)
and might help reduce broken links.

• It is possible to add links to documents that cannot be modified, such
as documents residing on another server or a document in non-XML
format.

The following is an example of an extended link:
<xlink:extended xmlns:xlink=”http://www.w3.org/XML/XLink/0.9”

role=”resources”

title=”Web Resources”

showdefault=”replace”

actuatedefault=”user”>

<xlink:locator href=”http://www.mcp.com”

role=”resource”

title=”Macmillan”/>

<xlink:locator href=”http://www.pineapplesoft.com/newsletter”

role=”resource”

title=”Pineapplesoft Link”/>

<xlink:locator href=”http://www.xml.com”

role=”resource”

title=”XML.com”/>

<xlink:locator href=”http://www.comics.com”

role=”resource”

title=”Comics.com”/>

<xlink:locator href=”http://www.fatbrain.com”

role=”resource”

title=”Fatbrain.com”/>

<xlink:locator href=”http://www.abcnews.com”

role=”resource”

title=”ABC News”/>

</xlink:extended>

326 Chapter 10: Modeling for Flexibility

E X A M P L E

12 2429 CH10 2.29.2000 2:24 PM Page 326

The current generation of browsers do not support XLink, if only because
the standard is not final yet. However, to render an extended link, the
browser will need to offer a menu when the user clicks on the link.

Because Internet Explorer does not recognize XLink, Figures 10.5 and 10.6
simulate this behavior through an XSLT style sheet. The style sheet inserts
JavaScript code that opens a new window when the user clicks the link.

327Signature

O U T P U T

Figure 10.5: The extended link Figure 10.6: The extended link
before the user clicks after the user has clicked

XLink and Browsers
XLink support will probably be added to browsers when the standard is
complete. At that time, the browsers will be able to view and render the
links automatically.

This feature is very similar to the price list example: A minimalist core is
agreed upon (essentially, how to specify a link), just enough for the software
(the browser) to process the document. This minimalist amount of stan-
dardization does not prevent the creation of other elements. Indeed, most
documents will include many elements in addition to the links.

In the example of the price list, the BestDeal application picks the elements
it needs for comparison, like a browser singles out links in a document.
However, the document contains many other elements that are ignored by
the application.

Signature
Expect more standards similar to XLink where the W3C defines elements
and attributes for commonly used features. Over time, the W3C (and other
groups) will build a toolbox of elements that you can use in your docu-
ments.

12 2429 CH10 2.29.2000 2:24 PM Page 327

The signature standard currently being developed by the W3C and the
IETF (Internet Engineering Task Force) is another example of this
approach. Although it has nothing to do with links or product prices, it is
based on the same idea of standardizing a few elements required for some
application. The application is cryptographic software in this case.

Increasingly, you will need digitally signed documents. A digital signature
guarantees that the document was written (or approved) by the signer.

For example, electronic prescriptions would have to be signed. If you
receive a prescription from your doctor via email (don’t laugh, some people
are seriously considering this), you want to be sure it really originated from
your doctor: You don’t want anybody else to prescribe your medicine.

The same holds true for commercial and administrative documents such as
orders, payments, passports, or even concert tickets. You want to be sure
your tickets are valid. So does the show manager.

The xmldsig working group aims at developing a set of elements and attrib-
utes to represent digital signatures in XML documents.

The benefit of a standard set of elements and attributes is always the
same: The software (such as a browser) can recognize it and automatically
process it.

The work on the XML signature is still at a very preliminary stage. There
is not even a draft standard, but the following example shows how XML
signatures might look. This example is taken from Digital Signatures for
XML by Richard D. Brown.
Listing 10.14: Digital Signature in an XML Document

<?xml version=’1.0’?>

<!-- no URI has been agreed upon so far -->

<Ticket xmlns:dsig=”...”>

<Body number=’120456789’>

<Event desc=’concert in Austin’

date=’1999-04-12T20:30-0500’/>

<Beneficiary name=’John smith’

ssno=’435-56-4023’/>

</Body>

<dsig:Signature>

<dsig:Manifest>

<dsig:Resources>

<dsig:Resource>

<dsig:Locator href=’120456789’/>

328 Chapter 10: Modeling for Flexibility

E X A M P L E

12 2429 CH10 2.29.2000 2:24 PM Page 328

<dsig:Digest>

<dsig:Algorithm type=’urn:com-globeset:xhash’/>

<dsig:Value encoding=’base64’>

bndWGryrt245u6t1dgURTIrr4ir5=

</dsig:Value>

</dsig:Digest>

</dsig:Resource>

</dsig:Resources>

<dsig:OriginatorInfo>

<dsig:IssuerAndSerialNumber

issuer=’o=GlobeSet Inc., c=US’

number=’123456789102356’/>

</dsig:OriginatorInfo>

<dsig:SignatureAlgorithm>

<dsig:Algorithm type=’urn:rsasdi-com:rsa-encryption’>

<dsig:Parameter type=’digest-algorithm’>

<dsig:Algorithm type=’urn:globeset-com:xhash’/>

</dsig:Parameter>

</dsig:Algorithm>

</dsig:SignatureAlgorithm>

</dsig:Manifest>

<dsig:Value>

xsqsfasDys2h44u4ehJDe54he5j4dJYTJ=

</dsig:Value>

</dsig:Signature>

<dsig:Certificate type=’urn:X500:X509v3’>

<dsig:IssuerAndSerialNumber

issuer=’o=GlobeSet Inc., c=US’

number=’123456789102356’/>

<dsig:Value>

xsqsfasDys2h44u4ehJDe54he5j4dJYTJ=

</dsig:Value>

</dsig:Certificate>

</Ticket>

As you can see, the digital signature is included in the document in the
form of elements in the dsig namespace. Other elements, such as Ticker
and Body, are specific to the current document.

329Signature

12 2429 CH10 2.29.2000 2:24 PM Page 329

The Right Level of Abstraction
When designing XML applications and, more specifically, XML DTDs, it is
not always easy to decide what to include in the markup and what to leave
out. This section provides some guidance.

Destructive and Nondestructive Transformations
It takes very little effort to turn an office into a mess: just start piling old
files and let documents accumulate in the inbox. In no time, the mess gets
out of control. It requires continuous effort to keep the office tidy.

Unfortunately, the same is true for XML documents. It is very easy to turn
an XML document in to a mess, but it is very difficult to keep it tidy. Also,
it takes a lot of effort to clean up documents that have been degraded.

1. In particular, it is easy to lose information when transforming an XML
document. The list of products in Listing 10.15 helps illustrate this
point.

Listing 10.15: A List of Products in XML

<?xml version=”1.0”?>

<products>

<product>

<name>XML Editor</name>

<price>499.00</price>

</product>

<product>

<name>DTD Editor</name>

<price>199.00</price>

</product>

<product>

<name>XML Book</name>

<price>19.99</price>

</product>

<product>

<name>XML Training</name>

<price>699.00</price>

</product>

</products>

Listing 10.16 is an XSLT style sheet that transforms this document into
another XML document.

330 Chapter 10: Modeling for Flexibility

E X A M P L E

12 2429 CH10 2.29.2000 2:24 PM Page 330

Listing 10.16: Style Sheet to Transform the Document

<?xml version=”1.0”?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/XSL/Transform/1.0”>

<xsl:template match=”products”>

<products>

<xsl:apply-templates/>

</products>

</xsl:template>

<xsl:template match=”product”>

<product>

<xsl:attribute name=”name”>

<xsl:value-of select=”name”/>

</xsl:attribute>

<xsl:attribute name=”price”>

<xsl:value-of select=”price”/>

</xsl:attribute>

</product>

</xsl:template>

</xsl:stylesheet>

Listing 10.17 shows the result of applying the style sheet to the product
list.
Listing 10.17: The XML Document Created by the Style Sheet

<?xml version=”1.0”?>

<products>

<product name=”XML Editor”

price=”499.00”/>

<product name=”DTD Editor”

price=”199.00”/>

<product name=”XML Book”

price=”19.99”/>

<product name=”XML Training”

price=”699.00”/>

</products>

331The Right Level of Abstraction

O U T P U T

12 2429 CH10 2.29.2000 2:24 PM Page 331

This transformation has not degraded the original document because
Listing 10.17 carries as much information as Listing 10.15. Furthermore,
the information has the same structure as the information in Listing 10.15.
This transformation is nondestructive—it does not lose any information.

2. To prove that the transformation is nondestructive, Listing 10.18
shows another style sheet that does the reverse operation. Applying
Listing 10.18 to Listing 10.17 results in Listing 10.15.

Listing 10.18: The Reverse Style Sheet

<?xml version=”1.0”?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”>

<xsl:output method=”xml”/>

<xsl:template match=”products”>

<products>

<xsl:apply-templates/>

</products>

</xsl:template>

<xsl:template match=”product”>

<product>

<name>

<xsl:value-of select=”@name”/>

</name>

<price>

<xsl:value-of select=”@price”/>

</price>

</product>

</xsl:template>

</xsl:stylesheet>

From a data-management point of view, nondestructive transformations are
ideal because they preserve the quality of the information.

3. On the other hand, destructive transformations are very useful in
practice, if only because publishing is often a destructive transforma-
tion. Listing 10.19 converts the price list to HTML.

Listing 10.19: Converting to HTML

<?xml version=”1.0”?>

<xsl:stylesheet

332 Chapter 10: Modeling for Flexibility

E X A M P L E

E X A M P L E

12 2429 CH10 2.29.2000 2:24 PM Page 332

xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”

xmlns=”http://www.w3.org/TR/REC-html40”>

<xsl:output method=”html”/>

<xsl:template match=”/”>

<HTML>

<HEAD><TITLE>Product List</TITLE></HEAD><BODY>

<P>Product List</P>

<xsl:apply-templates/>

</BODY>

</HTML>

</xsl:template>

<xsl:template match=”name”>

<P><xsl:apply-templates/></P>

</xsl:template>

<xsl:template match=”price”>

<P><xsl:apply-templates/></P>

</xsl:template>

</xsl:stylesheet>

Unfortunately, this is also a destructive conversion. The result of applying
Listing 10.19 to Listing 10.15 is shown in Listing 10.20.
Listing 10.20: HTML Result

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>

<HTML>

<HEAD>

<TITLE>Product List</TITLE>

</HEAD>

<BODY>

<P>Product List</P>

<P>XML Editor</P>

<P>499.00</P>

<P>DTD Editor</P>

<P>199.00</P>

<P>XML Book</P>

333The Right Level of Abstraction

O U T P U T

continues

12 2429 CH10 2.29.2000 2:24 PM Page 333

<P>19.99</P>

<P>XML Training</P>

<P>699.00</P>

</BODY>

</HTML>

The tags in the HMTL version are meaningless. They do not reflect the
structure and it is not possible to perform further conversions from the
HTML tags alone. The <P> tag is ambiguous because it is used both for
the price and product name. No style sheet could transform this document
back in to XML.

Mark It Up!
The previous section reinforces the importance of structure and proper
markup. In XML, everything is derived from the structure and it is there-
fore important that the structure be sound.

Figure 10.7 illustrates the optimal situation. The information is maintained
in a highly structured format. To create new documents, transformations
are applied to the highly structured document. Some transformations will
be nondestructive but most are destructive transformations.

Most of these destructive transformations are for presentation purposes,
such as converting XML to HTML. Ultimately, as browsers implement more
XML companion standards like XLink or XSLFO, less destructive conver-
sions will be required.

334 Chapter 10: Modeling for Flexibility

Listing 10.20: continued

Figure 10.7: How to best use XML

The logical conclusion is to introduce as much structure as possible in your
document. You should mark up all the major components of the document
with either tags or attributes. It is not always easy to decide how far to go.
Obviously, you wouldn’t want to mark up every letter of every word:
<l>J</l><l>o</l><l>h</l><l>n</l>

12 2429 CH10 2.29.2000 2:24 PM Page 334

Similarly, you need to easily recognize high-level structures. In the follow-
ing document, it is easy to recognize that there is a name, an address, and
a phone number.
John Doe

34 Fountain Square Plaza

Cincinnati, OH 45202

US

513-555-8889

This structure results in the following markup:
<entry>

<name>John Doe</name>

<address>34 Fountain Square Plaza

Cincinnati, OH 45202

US</address>

<tel>513-555-8889</tel>

</entry>

The difficulty is finding the appropriate granularity. Is the previous exam-
ple enough? Unlikely. It is probably best to mark more. For example:
<entry>

<name>John Doe</name>

<address>

<street>34 Fountain Square Plaza</street>

<region>OH</region>

<postal-code>45202</postal-code>

<locality>Cincinnati</locality>

<country>US</country>

</address>

<tel>513-555-8889</tel>

</entry>

Is this enough or do you need to further break some of the elements,
such as
<name>

<fname>John</fname>

<lname>Doe</lname>

</name>

335The Right Level of Abstraction

12 2429 CH10 2.29.2000 2:24 PM Page 335

The question is: “Where do you stop?” What is the correct granularity for an
XML document? Unfortunately, there are no strict criteria. Your experience
will guide you. It is, however, a good idea to mark up as much as is conve-
nient.

The end user’s convenience is the best guideline to use when deciding
where to stop breaking a document into smaller pieces.

Indeed, if the DTD is too detailed and requires the user to identify details,
it won’t work. The document may be highly structured but, upon closer
analysis, most of the markup will prove to be incorrect. This problem is
often experienced by database administrators who have very good data
schemas but very poor information in the database.

For example, if you were to ask users to break the street into further com-
ponents such as
<street>

<nr>34</nr>

<name>Fountain Square</name>

<type>Plaza</type>

</street>

It probably wouldn’t work. Realistically, few people would know where to
insert the markup. Is it <type>Plaza</type> or
<street>

<nr>34</nr>

<name>Fountain</name>

<type>Square Plaza</type>

</street>

The only way to know when to stop breaking a document into smaller
pieces is to write sample documents or even small prototypes as you design
the DTD. As you gain experience with XML, this will become easier.

Use the sample documents or the prototype to test the usability of the DTD.
Does it accurately capture all the information? Does it capture enough
details? Is it nonobtrusive? You don’t want to capture too many details and
alienate the users.

Avoiding Too Many Options
As you finalize your DTD, you should proofread it to check against exces-
sive use of options.

A warning bell should ring in your head if the DTD leaves too many options
open. This is usually a sign that you need to be stricter in the markup.

336 Chapter 10: Modeling for Flexibility

12 2429 CH10 2.29.2000 2:24 PM Page 336

The DTD in Listing 10.21 leaves too many options open. Figure 10.8 is a
graphical view of the DTD.

337The Right Level of Abstraction

E X A M P L E

Figure 10.8: A graphical view of the DTD

Listing 10.21: A DTD for an Order

<!ENTITY % company “(name,address)”>

<!ELEMENT order (date,sender,receiver,lines)>

<!ELEMENT date (#PCDATA)>

<!ELEMENT sender %company;>

<!ELEMENT receiver %company;>

<!ELEMENT lines (reference*,description*,quantity?,

time-material*,price?)+>

<!ELEMENT reference EMPTY>

<!ATTLIST reference href CDATA #IMPLIED>

<!ELEMENT description (#PCDATA)>

<!ELEMENT quantity (#PCDATA)>

<!ELEMENT time-material (#PCDATA)>

<!ELEMENT price (#PCDATA)>

<!ATTLIST price currency (usd | eur) #IMPLIED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT address (street,region?,postal-code,

locality,country)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT region (#PCDATA)>

<!ELEMENT postal-code (#PCDATA)>

<!ELEMENT locality (#PCDATA)>

<!ELEMENT country (#PCDATA)>

The problem with this DTD is the content model for lines:

12 2429 CH10 2.29.2000 2:24 PM Page 337

<!ELEMENT lines (reference*,description*,quantity?,

time-material*,price?)+>

This model has so many options that the document in Listing 10.22 is valid,
even though the lines element has no content. This is probably not what
the DTD designer intended because it makes no sense to issue an order
that contains only names and addresses.
Listing 10.22: A Valid Invoice

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!DOCTYPE order SYSTEM “order.dtd”>

<order>

<date>19990727</date>

<sender>

<name>Playfield Software</name>

<address>

<street>38 Fountain Square Plaza</street>

<region>OH</region>

<postal-code>45263</postal-code>

<locality>Cincinnati</locality>

<country>US</country>

</address>

</sender>

<receiver>

<name>Macmillan Publishing</name>

<address>

<street>201 West 103rd Street</street>

<region>IN</region>

<postal-code>46290</postal-code>

<locality>Indianapolis</locality>

<country>US</country>

</address>

</receiver>

<lines/>

</order>

This creates a hole in the document. The solution is to use the or connector
more often. A more realistic content model might be
<!ELEMENT lines ((reference | description)+,

(quantity | time-material+),price?)+>

338 Chapter 10: Modeling for Flexibility

12 2429 CH10 2.29.2000 2:24 PM Page 338

This model states that there is at least one reference or one description for
each product (there may be several references or several descriptions).
Also the order is either for a certain quantity or on a time and material
basis, one of the two elements must be present. Figure 10.9 illustrates this
structure.

339Attributes Versus Elements

Figure 10.9: The structure of the new DTD

When resolving these problems, it is important to avoid introducing ambi-
guities in the DTD. The following model would have been ambiguous:
<!ELEMENT lines ((reference+ | (reference+, description+) |

description+),

(quantity | time-material+),price?)+>

It says that a line has either references or descriptions or both. Unfor-
tunately, it is ambiguous. To remove the ambiguity, you can introduce a
new element such as
<!ELEMENT line ((ref-desc | reference+ | description+),

(quantity | time-material+ | price?))+>

<!ELEMENT ref-desc (reference+,description+)>

Attributes Versus Elements
As you have seen in the earlier section “The Right Level of Abstraction,”
you can use elements or attributes interchangeably to record the informa-
tion in a DTD.

This has lead to heated debates in the XML community between the propo-
nents of attributes and the proponents of elements. Specifically, the debate
is whether it is best to store content in attributes or in elements.

Both sides have very convincing arguments and support their claims with
good examples that clearly demonstrate the superiority of attributes over
elements, or elements over attributes. The only problem is that both sides
are right.

12 2429 CH10 2.29.2000 2:24 PM Page 339

This debate is similar to the debate between inheritance and aggregation in
object-oriented modeling. There are some clear arguments for and against
each approach. And yet, when you have a blank sheet of paper in front of
you, the solution is sometimes obvious, sometimes not.

I don’t believe one approach is intrinsically better than the other. I try to
keep an open mind and to adapt to the needs of the application at hand.
For some applications, attributes just seem to work better, for others, ele-
ments are the clear winner. I always keep in mind that conversion is an
option provided the structure is good enough.

Your experience will guide you as well. The next two sections present some
of the reasons you might use attributes or elements.

Using Attributes
1. A major advantage of attributes is that they establish a strong rela-

tionship with their parent element. This makes it easy to process all
the attributes attached to an element. This is particularly true for
SAX parsers, as illustrated by the following code excerpt:

public void startElement(String name,AttributeList attributes)

{

if(name.equals(“price”))

{

String attribute = attributes.getValue(“price”);

if(null != attribute)

{

double price = toDouble(attribute);

if(min > price)

{

min = price;

vendor = attributes.getValue(“vendor”);

}

}

}

}

In contrast, it is more difficult to walk down the element tree and collect
information from the children of an element.

2. Elements are naturally organized in a hierarchy, whereas attributes
cannot nest.

340 Chapter 10: Modeling for Flexibility

E X A M P L E

E X A M P L E

12 2429 CH10 2.29.2000 2:24 PM Page 340

This provides a clean-cut separation between elements and attributes that
has led some to argue that elements should be used to express the struc-
ture (the relationship between elements) and attributes to hold the content.

This approach suggests that leaf elements should be turned into attributes:

<entry>

<name name=”John Doe”/>

<address street=”34 Fountain Square Plaza”

region=”OH”

postal-code=”45202”

locality=”Cincinnati”

country=”US”/>

<tel tel=”513-555-8889”/>

</entry>

3. Finally, attributes are also popular because the DTD gives you more
control over the type and value of attributes than over the type and
value of elements.

You can restrict an attribute to a list of values whereas the type of an ele-
ment is essentially text.
<!ATTLIST price currency (usd | eur) #IMPLIED>

This argument however will soon disappear. The new XML schema will
offer better data typing for elements.

Using Elements
1. If attributes are easier to manipulate for the programmer, elements

are typically easier to work with in XML editors or browsers. For one
thing, it is impossible to display attributes with CSS.

This would suggest that attributes are great for abstract data and elements
are ideal for human data.
url[protocol=’mailto’] {

text-decoration: none;

}

2. Elements can be repeated through the + and * occurrence indicators;
attributes cannot.

<?xml version=”1.0”?>

<entry>

<name>John Doe</name>

341Attributes Versus Elements

E X A M P L E

E X A M P L E

E X A M P L E

12 2429 CH10 2.29.2000 2:24 PM Page 341

<tel preferred=”true”>513-555-8889</tel>

<tel>513-555-7098</tel>

</entry>

3. Generally speaking, elements offer more room for extension and reuse
than attributes because elements are highly structured.

For example, in Listing 10.22, the address element is reused in the sender
and receiver elements. It is reused with its complete structure.

Lessons Learned
It is clear that elements and attributes have different characteristics.
Unfortunately, nobody seems to agree on how to exploit them best.

Over time, you will develop your own set of rules of when to use an
attribute and when to use an element. My set of rules, as I have already
explained, is to use elements for the essential property of an object and
attributes for ancillary properties.

This rule reflects my emphasis on structure over content. It is also very
similar to the popular rule that originated in the SGML community that
suggests using attributes for abstract concepts and elements for concrete
ones.

Note that this is not a hard rule but one that depends on the application
being considered. For example, in the price-comparison application, the cur-
rency is second in importance to the price:
<price currency=”usd”>499.00</price>

However in a financial application, the currency may be an element in its
own right:
<currency>usd</currency>

T I P
Gray areas like this, where there are no clear rules, are unavoidable in XML. XML
wouldn’t be so powerful and flexible if it didn’t offer several solutions for each problem.

Don’t waste too much time trying to find the best rule because there probably is no one
best rule. Pick one approach, document it in as nonambiguous terms as possible, and
try to be consistent.

342 Chapter 10: Modeling for Flexibility

E X A M P L E

E X A M P L E

12 2429 CH10 2.29.2000 2:24 PM Page 342

What’s Next
The next two chapters put all the knowledge of XML you have acquired to
the test because they help you build a realistic e-commerce application
based on XML.

The application demonstrates many of the techniques you have studied in a
real-life context. It also shows how to use XML for distributed applications.

343What's Next

12 2429 CH10 2.29.2000 2:24 PM Page 343

13 2429 CH11 2.29.2000 2:24 PM Page 344

11

N-Tiered Architecture and XML
You are now familiar with every aspect of XML. This chapter and the next
one demonstrate how to put these techniques to use in a medium-sized
example. There are no new techniques introduced in these chapters, but
they illustrate how to apply what you have learned to a real-world applica-
tion. In particular, you learn

• how to use XML for interapplication communication

• how to use XML for electronic commerce

• how to take advantage of XML tools

Throughout these two chapters, you’ll develop a multimerchant Web shop
or a Web mall, dubbed XCommerce (XML Commerce), as an example.

This chapter must be read in conjunction with the next chapter. This chap-
ter introduces many of the ideas underlying the XCommerce application. It
includes many code snippets and partial listings that are used to illustrate
a point. The complete source code is in the next chapter. The concept of an
electronic mall is increasingly popular; the largest sites such as Yahoo! and
AOL are rushing to offer such services. The idea is to group several mer-
chants on one Web site. The mall offers additional services, such as a single
shopping cart, joint promotion, and, hopefully, more traffic.

However, a mall implementation needs to balance the need for common fea-
tures among the various merchants, such as a shopping cart, with the need
for the merchants to differentiate themselves and their products. XML
helps in this respect.

What Is an N-Tiered Application?
Most medium- and large-scale XML applications are distributed applica-
tions, meaning that they involve several computers linked over a network
(typically the Internet or a LAN).

13 2429 CH11 2.29.2000 2:24 PM Page 345

Most of these applications are called n-tiered applications. XCommerce is
an n-tier application. Essentially, n-tiered applications are a specialized
form of client/server application.

Client/Server Applications
As Figure 11.1 illustrates, the Web is a good example of a client/server
application, so you are already familiar with the idea. On the left side is the
Web client also known as the browser. On the right side is the Web server.

346 Chapter 11: N-Tiered Architecture and XML

E X A M P L E

Figure 11.1: The Web is a client/server application.

At the user initiative, the browser requests Web pages from the server. The
server delivers the pages and the client displays them. In effect, the client
is a tool for the user to interact with the server.

Client/server applications have two essential characteristics:

• They are distributed applications, meaning that two or more comput-
ers are connected over a network.

• The two computers have specific roles.

The second point differentiates client/server applications from other forms
of distributed applications (such as peer-to-peer ones). It means that there
is a client and server and that their roles differ.

The server provides services to the client. The server is the producer and
the client is the consumer. However, the server provides services only at the
client’s request. This is a sort of master/slave relationship where the master
(the client) requests services from the slave (the server).

The Web is but one example of client/server. Other examples include

• Internet mail, where the mail client (such as Eudora or Outlook) inter-
acts with the mail server to deliver and receive email

• Novell print and file servers, where the stations on a LAN can store
files or print documents on a server

• PowerBuilder and other 4GL applications, where a local client inter-
acts with a database server for administrative applications

E X A M P L E

13 2429 CH11 2.29.2000 2:24 PM Page 346

Generally speaking, the server has access to resources that the client does
not have access to or that are too difficult for the client to manage. In the
case of the Web, the resources are HTML files. It would not be realistic to
keep a local copy of every Web page. It makes more sense to request those
pages you want to see at a particular time.

For email, the resource is a 24/7 Internet connection. A client could send
emails directly but it makes more sense to pass the burden to a dedicated
server that handles errors and retries.

Novell servers have printers and plenty of hard disks. In most setups, it is
not cost-effective to give every user a fast printer and it is safer and more
efficient to store files on a central location. Among other things, it simplifies
backups.

Database servers provide a central storage for the data in the organization.
Therefore, a database server has more information than is available to a
given PC.

3-Tiered Applications
As we enter an increasingly wired world, the server itself needs to rely
on other servers. Webmail is a good example of an n-tiered application.
Webmail are those applications that let you read and compose emails
through a Web site. Popular Webmails include Hotmail (www.hotmail.com)
and Startmail (www.startmail.com).

As Figure 11.2 illustrates, in this setup, a server can also act as a client to
another server. Indeed, the browser is a client. The email server is a server.
But the Web server is both a client and a server: It is a server when talking
to the browser and it is a client when talking to the email server.

347What Is an N-Tiered Application?

E X A M P L E

Figure 11.2: The Web server plays both roles.

This application consists of two client/server applications chained together.
This is known as a three-tiered application. There are three tiers because
there are three parties involved.

To differentiate between the various clients and servers, the leftmost client
is often called the presentation tier because it is the interface for the end
user. The machine in the middle, the one that plays both client and server,
is often referred to as a middle tier.

13 2429 CH11 2.29.2000 2:24 PM Page 347

In most cases, but not in this example, the rightmost server is a database
server and is therefore often called the data tier.

N-Tiers
It’s possible to add more parties to the application by chaining together
more client/server applications. For example, some email servers depend on
a database. The Webmail application would look like Figure 11.3 where
there are four parties or tiers.

348 Chapter 11: N-Tiered Architecture and XML

E X A M P L E

Figure 11.3: Adding one more tier

As you add more tiers, you can build 5-tiered or 6-tiered applications, or
even more (although having more than four tiers is uncommon). The term
n-tiers is a generic term for client/servers with three or more tiers.

The XCommerce Application
Chapter 12, “Putting It All Together: An e-Commerce Example,” contains
the source code with comments for the XCommerce application. As
explained earlier, this is a shopping mall that allows several merchants to
work together.

Figure 11.4 is a breakdown of XCommerce. The main components are the
middle tier, or the shop, and the data tier, which can be either an XML
server or a file.

Figure 11.4: The main components of XCommerce

13 2429 CH11 2.29.2000 2:24 PM Page 348

Simplifications
XCommerce is representative of a real Web mall. However, because this is a
book about XML, I have made a few simplifications. These simplifications
are not related to the use of XML in any way:

• There is no provision for payments. Processing payments typically
requires credit card processing and a merchant account and is clearly
outside the scope of this book.

• The buyer cannot shop for more than one product at a time. This
saves writing a shopping cart (a small database that stores the items
bought so far).

• Presentation is minimalist. You would want to include more graphics
and better layout in a real shop.

Additionally, security has been kept simple. It is possible to add encryption
but it is outside the scope of this book.

Shop
The middle tier is not very complex. Essentially, it manages a number of
XML documents: one for the list of merchants, one for the list of products,
and one for each product. The middle tier applies style sheets to these docu-
ments in response to user requests.

The shop is one servlet. It uses the URL to decide which document to use.
The URL has the form /shop/merchant/product. Possible URLs include
/shop

/shop/xmli

/shop/xmli/1

/shop/emailaholic/0

Each level in the URL corresponds to a different XML document. The /shop
URL is the list of merchants. The /shop/xmli URL is the list of products for
the XMLi merchant. The /shop/xmli/1 is product number 1 from the XMLi
merchant.

There is a different Java class for each level in the URL. These classes are
responsible for downloading the appropriate XML document and for apply-
ing the style sheet. The following example shows how to download the list
of products for a merchant:
protected Document getDocument()

throws ServletException

{

if(null == productsDocument ||

349The XCommerce Application

E X A M P L E

E X A M P L E

13 2429 CH11 2.29.2000 2:24 PM Page 349

expire < System.currentTimeMillis())

{

Element productsElement =

XMLUtil.extractFirst(merchantElement,”products”);

if(null != productsElement)

{

String fname =

productsElement.getAttribute(“href”);

String update =

productsElement.getAttribute(“update”);

if(!XMLUtil.isEmpty(fname))

{

productsDocument = XMLUtil.parse(fname);

freshened();

productXSL = null;

productsXSL = null;

}

if(!XMLUtil.isEmpty(update))

{

long u = Long.parseLong(update) * 1000;

expire = System.currentTimeMillis() + u;

}

}

}

return productsDocument;

}

There are a few remarkable things about this example:

• It periodically reloads the list of products.

• It can download the list of products from a Web site, such as the XML
servlet from Emailaholic. However, it can also load the document from
a file, such as the file created by XMLi.

• It breaks the list of products in the Product object. Each product object
is responsible for one product. Product objects are used for URLs of
the form /shop/xmli/1.

350 Chapter 11: N-Tiered Architecture and XML

13 2429 CH11 2.29.2000 2:24 PM Page 350

In most cases, the shop ends up applying XSL style sheets to the XML doc-
ument, such as
public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException

{

XMLUtil.transform(getDocument(),

getXSL(),

response.getWriter(),

response.getCharacterEncoding());

}

The one exception is the checkout. When the user buys a product, the shop
loads an HTML form to collect the buyer’s name and address. The form is
directly created in HTML.

When the user has provided the relevant data, the shop creates an XML
file with the order. The order is posted automatically to the Web site of
Emailaholic. For XMLi, the order is saved in a local file. As explained previ-
ously, Emailaholic imports the orders in a database whereas XMLi views
them online with a style sheet.

The following example shows how to generate the XML order:
public void doSaveOrder(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

String productid = request.getParameter(“product”),

merchantid = request.getParameter(“merchant”);

Product product = getProduct(merchantid,productid);

if(null == product)

{

response.sendError(HttpServletResponse.SC_NOT_FOUND);

return;

}

Merchant merchant = product.getMerchant();

String postURL = merchant.getPostURL();

Writer writer = null;

if(null != postURL)

writer = new StringWriter();

351The XCommerce Application

E X A M P L E

E X A M P L E

13 2429 CH11 2.29.2000 2:24 PM Page 351

else

{

String directory = getInitParameter(merchant.getID()

+ “.orders”),

// should be enough to avoid duplicates

fname = String.valueOf(System.currentTimeMillis())

+ “.xml”;

File file = new File(directory,fname);

writer = new FileWriter(file);

}

writer.write(“<?xml version=\”1.0\”?>”);

writer.write(“<order>”);

writer.write(“<buyer”);

writeAttribute(“name”,request,writer);

writeAttribute(“street”,request,writer);

writeAttribute(“region”,request,writer);

writeAttribute(“postal-code”,request,writer);

writeAttribute(“locality”,request,writer);

writeAttribute(“country”,request,writer);

writeAttribute(“email”,request,writer);

writer.write(“/>”);

writer.write(“<product”);

writeAttribute(“quantity”,request,writer);

writer.write(“ id=\””);

writer.write(product.getID());

writer.write(“\” name=\””);

writer.write(product.getName());

writer.write(“\” price=\””);

writer.write(product.getPrice());

writer.write(“\”/></order>”);

writer.close();

if(null != postURL)

{

Dictionary parameters = new Hashtable();

String user = merchant.getPostUser(),

password = merchant.getPostPassword(),

xmlData = writer.toString();

parameters.put(“user”,user);

352 Chapter 11: N-Tiered Architecture and XML

13 2429 CH11 2.29.2000 2:24 PM Page 352

parameters.put(“password”,password);

parameters.put(“xmldata”,xmlData);

HTTPPost post = new HTTPPost(postURL,parameters);

post.doRequest();

}

writer = response.getWriter();

writer.write(“<HTML><HEAD><TITLE>Checkout</TITLE></HEAD>”);

writer.write(“<BODY><P>Thank you for shopping with us!”);

writer.write(“
<A HREF=\””);

writer.write(request.getServletPath());

writer.write(“\”>Return to the shop”);

writer.write(“</BODY></HTML>”);

writer.flush();

}

XML Server
The data tier is a servlet that generates lists of products in XML from a
database. This is very similar to generating the order in the previous exam-
ple. The servlet also accepts orders in XML and stores them in the data-
base. This is easily done with DOM, as you can see:
protected void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

String sqlDriver = getInitParameter(“sql.driver”),

sqlURL = getInitParameter(“sql.url”),

sqlUser = request.getParameter(“user”),

sqlPassword = request.getParameter(“password”),

xmlData = request.getParameter(“xmldata”);

Reader reader = new StringReader(xmlData);

Document orderDocument = XMLUtil.parse(reader);

Element orderElement = orderDocument.getDocumentElement(),

buyerElement =

XMLUtil.extractFirst(orderElement,”buyer”),

productElement =

XMLUtil.extractFirst(orderElement,”product”);

String name = buyerElement.getAttribute(“name”),

353The XCommerce Application

E X A M P L E

13 2429 CH11 2.29.2000 2:24 PM Page 353

street = buyerElement.getAttribute(“street”),

region = buyerElement.getAttribute(“region”),

postal_code = buyerElement.getAttribute(“postal-code”),

locality = buyerElement.getAttribute(“locality”),

country = buyerElement.getAttribute(“country”),

email = buyerElement.getAttribute(“email”),

productid = productElement.getAttribute(“id”),

productname = productElement.getAttribute(“name”),

productprice = productElement.getAttribute(“price”),

productquantity =

productElement.getAttribute(“quantity”);

try

{

Class.forName(sqlDriver);

Connection connection =

DriverManager.getConnection(sqlURL,

sqlUser,

sqlPassword);

connection.setAutoCommit(false);

try

{

PreparedStatement stmt =

connection.prepareStatement(

“insert into orders (name,street,region,” +

“postal_code,locality,country,email,” +

“productid,productname,productprice,” +

“productquantity) “ +

“values(?,?,?,?,?,?,?,?,?,?,?)”);

try

{

stmt.setString(1,name);

stmt.setString(2,street);

stmt.setString(3,region);

stmt.setString(4,postal_code);

stmt.setString(5,locality);

stmt.setString(6,country);

stmt.setString(7,email);

354 Chapter 11: N-Tiered Architecture and XML

13 2429 CH11 2.29.2000 2:24 PM Page 354

stmt.setString(8,productid);

stmt.setString(9,productname);

stmt.setDouble(10,

formatter.parse(productprice).doubleValue());

stmt.setString(11,productquantity);

stmt.executeUpdate();

connection.commit();

}

finally

{

stmt.close();

}

}

finally

{

connection.close();

}

}

catch(ClassNotFoundException e)

{

throw new ServletException(e);

}

catch(SQLException e)

{

throw new ServletException(e);

}

catch(ParseException e)

{

throw new ServletException(e);

}

response.setStatus(HttpServletResponse.SC_OK);

response.setContentType(“text/xml”);

Writer writer = response.getWriter();

writer.write(“<?xml version=\”1.0\”?>”);

writer.write(“<status>200</status>”);

writer.flush();

}

355The XCommerce Application

13 2429 CH11 2.29.2000 2:24 PM Page 355

How XML Helps
As soon as there are two or more parties, they need to communicate.
Currently, two approaches are particularly popular for client/server applica-
tions:

• middleware such as CORBA (Common Object Request Broker
Architecture), DCOM (Distributed Component Object Model), or RPC
(Remote Procedure Call)

• exchange formats such as HTML or XML

Middleware
I won’t cover middleware in great detail (this is an XML book, not a middle-
ware book), but I want to provide you with enough information for a com-
parison.

The basic idea behind middleware is to reduce the effort required to write
distributed applications. Networks are not always safe, reliable, and
dependable. In fact, one could argue that they are exactly the opposite. To
work around these limitations, programmers have to implement specific
protocols.

It is not uncommon for network-specific code to amount to more than 10
times the business code. This process takes time and is not very productive.
Indeed, the time spent wrestling with the network and its security is not
spent solving actual business problems.

Middleware includes tools that deal with the network. For example, a net-
work might fail but middleware has logic to gracefully recover from these
failures. Also, on a network several computers need to collaborate.
Middleware offers tools to manage the interaction between these com-
puters.

Middleware is based on specific protocols but, instead of overwhelming pro-
grammers with details, it hides them. Programmers are free to concentrate
on business issues and, therefore, be more productive.

Listing 11.1 illustrates this. This is a simple CORBA client that appends
one line to an order and confirms it. A server maintains the order.
Listing 11.1: Small CORBA Example

import org.omg.CORBA.*;

public class StockExchangeClient

{

static public void main(String[] args)

356 Chapter 11: N-Tiered Architecture and XML

E X A M P L E

13 2429 CH11 2.29.2000 2:24 PM Page 356

{

String order = args[0],

product = args[1];

int quantity = Integer.parseInt(args[2]);

ORB orb = ORB.init(args,null);

Order remoteOrder = OrderHelper.bind(orb,order);

remoteOrder.appendLine(product,quantity);

remoteOrder.confirm();

}

}

Listing 11.1 is interesting because you can hardly tell it is a distributed
application. The only lines that explicitly deal with networks are these two:
ORB orb = ORB.init(args,null);

Order remoteOrder = OrderHelper.bind(orb,order);

and they are not very difficult. Without going into any details, they connect
to an order on the server. More interestingly, the application can manipu-
late the order, which is a server object, just as if it were a client object:
remoteOrder.appendLine(product,quantity);

remoteOrder.confirm();

That’s the power of middleware; it completely hides the distributed aspect.

Experience shows that middleware works better on LANs or intranets than
on cross-enterprise applications. This is because, with middleware, the
client directly manipulates objects on the server. This leads to a very tight
coupling between the client and the server. It is therefore simpler if both
parties are controlled by the same organization.

N O T E
Middleware gurus are quick to point out that it doesn’t have to be that way. Indeed
there are several mechanisms, including dynamic invocation, that support very flexible
coupling with middleware.

While it is correct technically, in practice, experience shows that most solutions based
on middleware are relatively inflexible and are therefore best suited for internal use.

Common Format
For applications that work across several organizations, it is easier to
exchange documents in a common format. This is how the Web works: A
Web server requests HMTL documents from a Web browser. This process
has proved to scale well to millions of users.

357How XML Helps

13 2429 CH11 2.29.2000 2:24 PM Page 357

HTML is a good format but it is intended for human consumption only.
XML, as you have seen, is similar but can be manipulated by applications.
XCommerce illustrates how it works (see Figure 11.5).

358 Chapter 11: N-Tiered Architecture and XML

E X A M P L E

Figure 11.5: The Web mall, XCommerce

As you can see, this is an n-tiered application: The client converses with the
mall server. The mall server converses with the XML data server. The data
server itself may be connected to a database server.

XML has many strong points for this setup:

• XML is extensible, which allows the different partners to build on
commonalities while retaining the option to extend the basic services
where appropriate.

• XML is structure-rich, which allows the middle server to process prod-
uct information (such as extracting prices).

• XML is versatile, therefore most data in the application are stored in
XML. In particular, XML is used for configuration information (the list
of merchants), for product information, and to store the orders them-
selves.

• XML scales well. Small merchants can prepare product lists manually
with an editor while larger merchants can generate the list from a
database.

• As a secondary benefit of scalability, XML gives the merchants lots of
flexibility in deploying their solutions. A merchant can start with a
simple solution and upgrade as the business expands.

• XML is based on the Web; therefore, it is often possible to reuse
HTML investments.

13 2429 CH11 2.29.2000 2:24 PM Page 358

• XML is textual, which simplifies testing and debugging (this should
not be neglected because very few applications work flawlessly the
first time).

• XML is cost effective to deploy because many vendors support it; com-
panion standards are also available.

XML for the Data Tiers
XML brings its emphasis on structure, its extensibility, its scalability, and
its versatility to the data tiers. This chapter has discussed the structure
aspect at length already, so let’s review the other features.

Extensibility
Figure 11.6 is the structure for the list of products. Listing 11.2 is an
example of a list of products.

359XML for the Data Tiers

Figure 11.6: Structure for the list of products

Listing 11.2: Product List in XML

<?xml version=”1.0”?>

<products merchant=”emailaholic”>

<product id=”0”>

<name>Ultra Word Processor</name>

<description>More words per minute than

the competition.</description>

<price>$799.99</price>

</product>

<product id=”1”>

<name>Super Calculator</name>

<description>Cheap and reliable with power saving.</description>

<price>$5.99</price>

</product>

continues

13 2429 CH11 2.29.2000 2:24 PM Page 359

<product id=”2”>

<name>Safest Safe</name>

<description>Choose the authentic Safest Safe.</description>

<price>$1,999.00</price>

</product>

</products>

✔ Obviously, some merchants will want to provide more information than is supported in the

list of products. For example, they will want to add images, manufacturer information, and

more. This is possible using the technique introduced in the section “Building on XML

Extensibility” in Chapter 10 (page 312).

Listing 11.3 illustrates how one merchant can publish additional product
information. The merchant has to provide a style sheet to display the extra
information to the buyer.
Listing 11.3: Extending the Core Format

<?xml version=”1.0”?>

<products merchant=”emailaholic”

xmlns:em=”http://www.emailaholic.com/xt/1.0”>

<product id=”0”>

<name>Ultra Word Processor</name>

<em:manufacturer>Ultra Word Inc.</em:manufacturer>

<em:image>wordprocessor.jpg</em:image>

<em:warranty>1 month</em:warranty>

<description>More words per minute than

the competition.</description>

<price>$799.99</price>

</product>

<product id=”1”>

<name>Super Calculator</name>

<em:manufacturer>United Calculators Corp.</em:manufacturer>

<em:image>calculator.jpg</em:image>

<em:warranty>6 months</em:warranty>

<description>Cheap and reliable with power saving.</description>

<price>$5.99</price>

</product>

<product id=”2”>

<name>Safest Safe</name>

360 Chapter 11: N-Tiered Architecture and XML

Listing 11.2: continued

13 2429 CH11 2.29.2000 2:24 PM Page 360

<em:manufacturer>Safe Safe Inc.</em:manufacturer>

<em:image>safe.jpg</em:image>

<em:warranty>lifetime</em:warranty>

<description>Choose the authentic Safest Safe.</description>

<price>$1,999.00</price>

</product>

</products>

Scalability
1. Currently, XCommerce has two merchants. Emailaholic, the first mer-

chant, is a large company. It has a Web site with a database of prod-
ucts available online. It dynamically generates XML documents from
its database.

Listing 11.4 is an extract from a servlet that generates the XML document
for Emailaholic. The complete listing is in Chapter 12, “Putting It All
Together: An e-Commerce Example.” Listing 11.5 is a server that
Emailaholic uses to manage its database; again, the complete listing is in
Chapter 12. Listing 11.4 generates XML; Listing 11.5 generates HTML for
a similar document.

Compare both listings and see how similar they are. Both are based on the
same Web technology and both are based on very similar markup lan-
guages. For Emailaholic, it is not much more difficult to write Listing 11.4,
which uses the newer XML, than to write Listing 11.5, which uses the well-
known HTML technology. In practice, it means that Emailaholic can reuse
its HTML experience with XML.

What does it all mean? It means that adding XML in a Web project is easy.
XML is popular because it is that simple.

It is also popular because it is based on many techniques that are already
well known through HTML; therefore, people are rapidly productive with
HTML. I have seen projects where people would take their HTML-based
application and turn it into an XML application in a matter of days, not
weeks.
Listing 11.4: Writing an XML Document

protected void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

response.setContentType(“application/xml”);

361XML for the Data Tiers

E X A M P L E

continues

13 2429 CH11 2.29.2000 2:24 PM Page 361

Writer writer = response.getWriter();

String sqlDriver = getInitParameter(“sql.driver”),

sqlURL = getInitParameter(“sql.url”),

sqlUser = getInitParameter(“sql.user”),

sqlPassword = getInitParameter(“sql.password”),

merchant = getInitParameter(“merchant”);

writer.write(“<?xml version=\”1.0\”?>”);

writer.write(“<products merchant=\””);

writer.write(merchant);

writer.write(“\” xmlns:em=\”http://www.emailaholic”);

writer.write(“.com/xt/1.0\”>”);

try

{

Class.forName(sqlDriver);

Connection connection =

DriverManager.getConnection(sqlURL,

sqlUser,

sqlPassword);

try

{

Statement stmt = connection.createStatement();

try

{

ResultSet rs =

stmt.executeQuery(“select id, name, “ +

“manufacturer, image, warranty, “ +

“description, price from products”);

while(rs.next())

{

writer.write(“<product id=\””);

writer.write(String.valueOf(rs.getInt(1)));

writer.write(“\”><name>”);

writer.write(rs.getString(2));

writer.write(“</name><em:manufacturer>”);

writer.write(rs.getString(3));

writer.write(“</em:manufacturer><em:image>”);

writer.write(rs.getString(4));

362 Chapter 11: N-Tiered Architecture and XML

Listing 11.4: continued

13 2429 CH11 2.29.2000 2:24 PM Page 362

writer.write(“</em:image><em:warranty>”);

writer.write(rs.getString(5));

writer.write(“</em:warranty><description>”);

writer.write(rs.getString(6));

writer.write(“</description><price>”);

writer.write(formatter.format(rs.getDouble(7)));

writer.write(“</price></product>”);

}

}

finally

{

stmt.close();

}

}

finally

{

connection.close();

}

}

catch(ClassNotFoundException e)

{

throw new ServletException;

}

catch(SQLException e)

{

throw new ServletException(e);

}

writer.write(“</products>”);

writer.flush();

}

Listing 11.5: Writing an HTML Document

protected void doPage(HttpServletRequest request,

HttpServletResponse response,

Connection connection)

throws SQLException, IOException

{

Writer writer = response.getWriter();

363XML for the Data Tiers

continues

13 2429 CH11 2.29.2000 2:24 PM Page 363

writer.write(“<HTML><HEAD><TITLE>XML Server Console” +

“</TITLE></HEAD><BODY>”);

Statement stmt = connection.createStatement();

try

{

// ... deleted, see chapter 12 for complete listing

ResultSet rs =

stmt.executeQuery(“select id, name from products”);

writer.write(“<TABLE>”);

while(rs.next())

{

writer.write(“<TR><TD>”);

writer.write(rs.getString(2));

writer.write(“</TD><TD><FORM ACTION=\””);

writer.write(request.getServletPath());

writer.write(“\” METHOD=\”POST\”>”);

writer.write(“ <INPUT TYPE=\”SUBMIT\””);

writer.write(“ VALUE=\”Delete\”>”);

writer.write(“<INPUT TYPE=\”HIDDEN\””);

writer.write(“ NAME=\”action\” VALUE=\”delete\”>”);

writer.write(“</FORM></TD></TR>”);

}

writer.write(“</TABLE>”);

// ... deleted, see chapter 12 for complete listing

}

finally

{

stmt.close();

}

writer.write(“</BODY></HTML>”);

writer.flush();

}

2. XMLi is the second merchant. XMLi is a smaller company and it
doesn’t have a Web site. Fortunately, there is more than one way to
generate XML documents. A small merchant, like XMLi, can prepare
its list of products (in XML) manually and upload the list to the mall
site. Figure 11.7 shows the editor XMLi uses.

364 Chapter 11: N-Tiered Architecture and XML

Listing 11.4: continued

13 2429 CH11 2.29.2000 2:24 PM Page 364

✔ This editor is nothing more than a style sheet and JavaScript so it is very simple to deploy.

The source code is in the section “Viewer and Editor” in Chapter 12 (page 444).

365XML for the Data Tiers

Figure 11.7: Editing the list of products

Versatility
The Web mall needs to forward the orders to the merchants. When a visitor
buys from the Web site, the order is also represented as an XML document.
So, XML serves all of the data exchange needs. Listing 11.6 shows a sample
order.
Listing 11.6: An Order in XML

<?xml version=”1.0”?>

<order>

<buyer name=”John Doe”

street=”34 Fountain Square Plaza”

region=”OH”

postal-code=”45202”

locality=”Cincinnati”

country=”US”

email=”jdoe@emailaholic.com”/>

<product quantity=”1”

id=”xmli”

name=”XML Book”

price=”$19.99”/>

</order>

E X A M P L E

13 2429 CH11 2.29.2000 2:24 PM Page 365

The order benefits from all the other qualities of XML. In particular, the
middle tier posts the order to the Emailaholic site, where it is automatically
parsed and loaded into a database.

Orders for XMLi are not posted to a Web site because XMLi has no Web
site. Instead, the orders are saved in files. To review its order, XMLi applies
a style sheet to them.

Again, the complete source code for this is in the next chapter. However, the
underlying idea is that XML is scalable: It works for Emailaholic, which
built a specialized server, but it also works for XMLi, which needs a simple,
browser-based tool.

XML on the Middle Tier
On the middle tier, XML is attractive because of the large range of tools
and standards that support it—mainly XML parsers and XSL processors.
Tools reduce the cost of development. In fact, many operations can be
implemented as XSL style sheets.

1. A style sheet can format the list of products for the end user. By
bundling an inexpensive XSL processor on the middle tier, the inter-
face with the buyers is built in no time.

Listing 11.7 shows the style sheet that formats the list of products seen pre-
viously in Listing 11.2. Figure 11.8 is the result in a browser.

✔ The section “The Middle Tier” in Chapter 12 (page 386) presents the servlet that applies

these style sheets.

Listing 11.7: Formatting the List of Products

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”

xmlns=”http://www.w3.org/TR/REC-html40”>

<xsl:output method=”html”/>

<xsl:template match=”/”>

<HTML>

<HEAD>

<TITLE>Online Shop</TITLE>

</HEAD>

<BODY>

<TABLE BORDER=”0”><xsl:for-each select=”products/product”>

<TR><TD><A><xsl:attribute name=”HREF”>/shop/<xsl:value-of

366 Chapter 11: N-Tiered Architecture and XML

E X A M P L E

13 2429 CH11 2.29.2000 2:24 PM Page 366

select=”/products/@merchant”/>/<xsl:value-of

select=”@id”/></xsl:attribute><xsl:value-of

select=”name”/>

<xsl:value-of select=”price”/></TD>

<TD><FORM ACTION=”/shop/checkout” METHOD=”POST”>

<INPUT TYPE=”HIDDEN” NAME=”merchant”>

<xsl:attribute name=”value”><xsl:value-of

select=”/products/@merchant”/></xsl:attribute>

</INPUT>

<INPUT TYPE=”HIDDEN” NAME=”product”>

<xsl:attribute name=”value”><xsl:value-of

select=”@id”/></xsl:attribute>

</INPUT>

<INPUT TYPE=”HIDDEN” NAME=”quantity” VALUE=”1”/>

<INPUT TYPE=”SUBMIT” VALUE=”Buy”/>

</FORM></TD>

</TR></xsl:for-each></TABLE>

</BODY>

</HTML>

</xsl:template>

</xsl:stylesheet>

367XML on the Middle Tier

O U T P U T

Figure 11.8: The list of products in a browser

2. Thanks to style sheets, merchants can customize the presentation of
their sites. Emailaholic is not happy with the standard style sheet,
and it provides its own style sheet (see Listing 11.8). This style sheet
works with documents such as the one in Listing 11.3.

13 2429 CH11 2.29.2000 2:24 PM Page 367

Again, this style sheet will work with the servlet in Chapter 12. The impor-
tant thing to remember is that each merchant can add tags to the product
description and provide a style sheet that takes advantage of the new tags.
Listing 11.8: The Emailaholic Style Sheet

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”

xmlns:em=”http://www.emailaholic.com/xt/1.0”

xmlns=”http://www.w3.org/TR/REC-html40”>

<xsl:output method=”html”/>

<xsl:template match=”/”>

<HTML>

<HEAD>

<TITLE>Emailaholic.com</TITLE>

</HEAD>

<BODY BGCOLOR=”orange”>

<CENTER><TABLE BGCOLOR=”white” WIDTH=”50%”><TR><TD><CENTER>

<TABLE BORDER=”0”><xsl:for-each

select=”products/product”><TR>

<TD><A><xsl:attribute

name=”HREF”>/shop/emailaholic/<xsl:value-of

select=”@id”/></xsl:attribute><xsl:value-of

select=”name”/>

by <xsl:value-of select=”em:manufacturer”/>

<xsl:value-of select=”price”/></TD>

<TD><FORM ACTION=”/shop/checkout” METHOD=”POST”>

<INPUT TYPE=”HIDDEN” NAME=”merchant”

VALUE=”emailaholic”/>

<INPUT TYPE=”HIDDEN” NAME=”product”>

<xsl:attribute name=”value”><xsl:value-of

select=”@id”/></xsl:attribute>

</INPUT>

<INPUT TYPE=”HIDDEN” NAME=”quantity” VALUE=”1”/>

<INPUT TYPE=”SUBMIT” VALUE=”Buy”/>

</FORM></TD>

</TR></xsl:for-each></TABLE>

</CENTER></TD></TR></TABLE></CENTER>

368 Chapter 11: N-Tiered Architecture and XML

13 2429 CH11 2.29.2000 2:24 PM Page 368

</BODY>

</HTML>

</xsl:template>

</xsl:stylesheet>

This style sheet differs from Listing 11.7 because it uses the information in
the http://www.emailaholic.com/xt/1.0 namespace. It also adopts a differ-
ent presentation; see Figure 11.9 for the result in a browser.

369XML on the Middle Tier

O U T P U T

Figure 11.9: Emailaholic style sheet in a browser

3. Finally, style sheets are useful for filtering information. The style
sheets in Listings 11.7 and 11.8 do not present all the information
from Listings 11.2 and 11.3. They both ignore the description. Listing
11.8 ignores most of Emailaholic-specific information. This keeps the
list of products small and quicker to download.

Style sheets in Listings 11.9 and 11.10 provide more details. They use all
the information available in the original document, but they present one
product only. Listing 11.9 is the standard mall style sheet whereas Listing
11.10 is specific to Emailaholic.

These style sheets also work with the servlet introduced in Chapter 12. The
idea, however, is that the style sheet is used to present more or less
detailed information to the user.

E X A M P L E

13 2429 CH11 2.29.2000 2:24 PM Page 369

Listing 11.9: Product.xsl

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”

xmlns=”http://www.w3.org/TR/REC-html40”>

<xsl:output method=”html”/>

<xsl:template match=”/”>

<HTML>

<HEAD>

<TITLE>Online Shop</TITLE>

</HEAD>

<BODY>

<P><xsl:value-of select=”product/name”/>

<xsl:value-of select=”product/description”/>

<xsl:value-of select=”product/price”/>

<FORM ACTION=”/shop/checkout” METHOD=”POST”>

<INPUT TYPE=”TEXT” SIZE=”3” NAME=”quantity” VALUE=”1”/>

<INPUT TYPE=”SUBMIT” VALUE=”Buy”/>

<INPUT TYPE=”HIDDEN” NAME=”merchant”>

<xsl:attribute name=”value”><xsl:value-of

select=”product/@merchant”/></xsl:attribute>

</INPUT>

<INPUT TYPE=”HIDDEN” NAME=”product”>

<xsl:attribute name=”value”><xsl:value-of

select=”product/@id”/></xsl:attribute>

</INPUT>

</FORM></P>

</BODY>

</HTML>

</xsl:template>

</xsl:stylesheet>

Listing 11.10: Emailaholic Style Sheet for Product

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”

xmlns:em=”http://www.emailaholic.com/xt/1.0”

xmlns=”http://www.w3.org/TR/REC-html40”>

370 Chapter 11: N-Tiered Architecture and XML

13 2429 CH11 2.29.2000 2:24 PM Page 370

<xsl:output method=”html”/>

<xsl:template match=”/”>

<HTML>

<HEAD>

<TITLE>Emailaholic.com</TITLE>

</HEAD>

<BODY BGCOLOR=”orange”>

<CENTER><TABLE BGCOLOR=”white” WIDTH=”50%”><TR><TD><CENTER>

<xsl:attribute

name=”SRC”>http://catwoman.pineapplesoft.com:81/<xsl:value-of

select=”product/em:image”/></xsl:attribute>

<xsl:value-of select=”product/name”/>

by <I><xsl:value-of

select=”product/em:manufacturer”/></I>

<xsl:value-of select=”product/description”/>

<SMALL>Warranty: <xsl:value-of

select=”product/em:warranty”/></SMALL>

<xsl:value-of select=”product/price”/>

<FORM ACTION=”/shop/checkout” METHOD=”POST”>

<INPUT TYPE=”TEXT” SIZE=”3” NAME=”quantity” VALUE=”1”/>

<INPUT TYPE=”SUBMIT” VALUE=”Buy”/>

<INPUT TYPE=”HIDDEN” NAME=”merchant”

VALUE=”emailaholic”/>

<INPUT TYPE=”HIDDEN” NAME=”product”>

<xsl:attribute name=”value”><xsl:value-of

select=”product/@id”/></xsl:attribute>

</INPUT>

</FORM>

</CENTER></TD></TR></TABLE></CENTER>

</BODY>

</HTML>

</xsl:template>

</xsl:stylesheet>

Figure 11.10 shows the result in a browser. Notice that more information is
available than shown in Figure 11.9.

371XML on the Middle Tier

O U T P U T

13 2429 CH11 2.29.2000 2:24 PM Page 371

Figure 11.10: Product information in a browser

Client
The last tier is the client. Ultimately, it will be possible to send XML to
the client and apply style sheets on the client. Currently, I would advise
against sending any XML to the client. It makes more sense to convert to
HTML on the server.

There are several problems with XML on the client:

• Currently, XML is supported only by the latest generation of browsers.
Studies show that surfers are less likely to update their browsers than
they were in the past, so implementation might take a while.

• Even if your target audience has XML-capable browsers, not all
browsers were born equal. There are important differences between
version 4.0 and version 5.0 of Internet Explorer and Mozilla, for
example.

• XSL implementations are particularly unstable. Internet Explorer 4.0
supported a very early version of XSL. Internet Explorer 5.0 is closer
to the standard, but will need changes. Currently, no browser has a
complete implementation of XSL.

In conclusion, it will probably take more than two years before XML will be
common. Currently converting XML to HTML on the server is the safe solu-
tion. It buys you the best of both worlds: It works with older browsers but it
still allows you to take advantage of XML in your applications.

In the previous chapters, you saw many examples that performed lots of
processing on the client side. However, in each case, I warned that it would
work only with specific browsers. XCommerce relies heavily on server-side
conversion because it is a more realistic example.

372 Chapter 11: N-Tiered Architecture and XML

13 2429 CH11 2.29.2000 2:24 PM Page 372

If you need special processing on the client, you can always resort to
JavaScript. It is even possible to combine XSL and JavaScript. Listing
11.11 demonstrates how to generate client-side JavaScript from a server-
side XSL style sheet.
Listing 11.11: Generating JavaScript from XSL

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”

xmlns=”http://www.w3.org/TR/REC-html40”>

<xsl:output method=”html”/>

<xsl:template match=”/”>

<HTML><HEAD><TITLE>Product List Editor</TITLE>

<SCRIPT LANGUAGE=”JavaScript” SRC=”editor.js”>

<xsl:text> </xsl:text></SCRIPT>

<SCRIPT LANGUAGE=”JavaScript”><xsl:comment>

function load(form)

{

<xsl:for-each select=”products/product”>

doAddProduct(form,

“<xsl:value-of select=”@id”/>”,

“<xsl:value-of select=”name”/>”,

“<xsl:value-of select=”price”/>”,

“<xsl:value-of select=”description”/>”);

</xsl:for-each>

}

// </xsl:comment>

</SCRIPT>

</HEAD>

<BODY ONLOAD=”load(document.controls)”>

<CENTER>

<FORM NAME=”controls” METHOD=”POST”

ACTION=”editor”>

ID: <INPUT TYPE=”TEXT” NAME=”id” SIZE=”3”/>

Name: <INPUT TYPE=”TEXT” NAME=”name”/>

Price: <INPUT TYPE=”TEXT” NAME=”price”

SIZE=”7”/>

Description:

373XML on the Middle Tier

E X A M P L E

continues

13 2429 CH11 2.29.2000 2:24 PM Page 373

<TEXTAREA NAME=”description” ROWS=”5”

COLS=”50”/>

<SELECT NAME=”productlist” SIZE=”5”

WIDTH=”250”/>

<INPUT TYPE=”BUTTON” VALUE=”Add”

ONCLICK=”addProduct(controls)”/>

<INPUT TYPE=”BUTTON” VALUE=”Delete”

ONCLICK=”deleteProduct(controls)”/>

Password: <INPUT TYPE=”PASSWORD” NAME=”pwd”/>

<INPUT TYPE=”SUBMIT” VALUE=”Save”

ONCLICK=”exportProduct(controls)”/>

<INPUT TYPE=”HIDDEN” NAME=”xmldata”/>

<INPUT TYPE=”HIDDEN” NAME=”merchant”>

<xsl:attribute name=”VALUE”>

<xsl:value-of select=”products/@merchant”/>

</xsl:attribute>

</INPUT>

</FORM>

</CENTER>

</BODY>

</HTML>

</xsl:template>

</xsl:stylesheet>

This is useful because the style sheet populates a list and data structure for
the JavaScript application. The following extract (taken from Listing 11.11)
is used to generate the JavaScript code based on the XML document:
function load(form)

{

<xsl:for-each select=”products/product”>

doAddProduct(form,

“<xsl:value-of select=”@id”/>”,

“<xsl:value-of select=”name”/>”,

“<xsl:value-of select=”price”/>”,

“<xsl:value-of select=”description”/>”);

</xsl:for-each>

}

374 Chapter 11: N-Tiered Architecture and XML

Listing 11.11: continued

13 2429 CH11 2.29.2000 2:24 PM Page 374

Applying the style sheet in Listing 11.11 to the XML document in Listing
11.3 generates the following JavaScript code. Note that this JavaScript code
reflects the products in the XML document. If you used a different XML
document for the list of products, the JavaScript would reflect that
doAddProduct(“0”,

“Ultra Word Processor”,

“More words per minute than the competition.”,

“$799.99”);

doAddProduct(“1”,

“Super Calculator”,

“Cheap and reliable with power saving.”,

“$5.99”);

doAddProduct(“2”,

“Safest Safe”,

“Choose the authentic Safest Safe.”,

“$1,999.00”);

C A U T I O N
Note that the JavaScript code is generated on the server but it is executed on the
client.

N O T E
I advise against sending XML to the client because there are not enough XML-capable
browsers.

This might not be true on an intranet. An intranet is a controlled environment; there-
fore, you might be able to control which browser is being used. Moreover, you can tailor
your documents to the appropriate browsers.

If, however, the intranet is large, stick to server-side conversion of XML. In a large
intranet, it is difficult to upgrade all the users simultaneously. If your appplication
depends on Internet Explorer 5.0 and 500 users out there are still using Internet
Explorer 4.0, it might not be possible to upgrade them.

Server-Side Programming Language
XCommerce relies extensively on XSL. From a certain point of view, XSL is
used as a scripting language for XML documents.

However, there are features that are not possible with XSL. For example,
there is no standard mechanism to split a document. This would be useful
for separating the list of products in a number of product documents.

375Server-Side Programming Language

13 2429 CH11 2.29.2000 2:24 PM Page 375

Therefore, XSL is not enough. A medium-sized XML application needs code
to compare documents, compile new documents, handle user authentica-
tion, and more. All these features are not being covered, or not properly
covered, by XSL.

The main options for server-side programming languages that work well
with XML are Perl, JavaScript, Python, Omnimark, and Java.

Perl
Perl is a scripting language. It is popular for CGI scripting because it offers
superior text manipulation. However, with XML, you’d rather manipulate
the text with XSL, so many of the features in Perl are not as important
with XML as with raw text.

JavaScript
JavaScript is also a scripting language. It is particularly popular for
browsers. Many examples in this book rely on JavaScript. There are server-
side versions of JavaScript from Microsoft and Netscape. Microsoft offers
Active Server Page (ASP). Netscape supports Server-Side JavaScript
(SSJS).

Although ASP and SSJS are very similar, they are incompatible. ASP and
SSJS encourage you to mix JavaScript statements in an HTML or an XML
page. The server, not the browser, executes the script to generate the final
page. Listing 11.12 shows you how to use SSJS to create an XML document
with product information.
Listing 11.12: Creating XML with SSJS

<SERVER>

deleteResponseHeader(“content-type”)

addResponseHeader(“content-type”,”application/xml”)

database.connect(“ODBC”,”products”,”SYSDBA”,”masterkey”,””)

product = database.cursor(“select * from products where id = ‘“ + request.id + “‘“)

product.next()

</SERVER><product>

<name><SERVER>write(product.name)</SERVER></name>

<description><SERVER>write(product.description)</SERVER></description>

<price><SERVER>write(product.price);product.close()</SERVER></price>

</product>

The first few lines change the type of the document to XML. Next, it con-
nects to the database. Finally, it reads various information from the data-
base and inserts it into an XML document.

376 Chapter 11: N-Tiered Architecture and XML

E X A M P L E

13 2429 CH11 2.29.2000 2:24 PM Page 376

The major problem with JavaScript is that it is not portable. An application
developed with Microsoft’s ASP does not work on Netscape servers and vice
versa. Obviously, ASP is available only on Windows Web servers. Using
JavaScript with Apache on Linux is simply not an option.

Python
Python is an object-oriented scripting language with a very pleasant syn-
tax. Python offers an XML parser. Although Python is rapidly gaining in
popularity, it is yet not as popular as Perl and JavaScript.

There is a Java implementation of Python which gives you access to all the
Java tools.

Omnimark
Omnimark is another scripting language that was developed specifically to
process SGML documents. It was later extended to support XML. If you
need a scripting language to manipulate XML documents, Omnimark is a
very good choice.

The major advantages of Omnimark are that it is available free of charge
from www.omnimark.com, it runs on many platforms, it has built-in support
for text manipulation and XML, and it has a compiler.

However, Omnimark is not well known outside of SGML circles and it is a
proprietary language.

Java
The last option is Java. This is the language I have used for most of
XCommerce (there is some client-side JavaScript as well). Keep in mind
that these are not client-side applets, but Java applications running on the
server.

Java has many strong points for XML development:

• Many XML tools are available in Java. Indeed, most of the XML tools
(parser, XSL processor, XQL engine, and so on) were first made avail-
able for Java.

• Java is highly portable. There are versions of Java for all the major
Web servers and then some.

• Java is a typed language and it is compiled. The compiler catches
many errors. This is important for server-side programming because a
faulty script can crash your server.

• There are several high-quality development environments available,
so you can choose the one that works best for you.

377Server-Side Programming Language

13 2429 CH11 2.29.2000 2:24 PM Page 377

• Many vendors support Java. You have an ample supply of books, com-
ponents, and services.

If you are familiar with JavaScript but you think Java is too complex, think
twice. With XML, you will write more XSL code than Java or JavaScript
code, anyway. You really need not worry about complex concepts in Java.

✔ If you are not familiar with Java but you would like to learn enough Java to run the

examples, turn to Appendix A, “Crash Course on Java,” (page 457).

What’s Next
The next chapter contains the entire source code for XCommerce. It pro-
vides a good illustration of what is possible with XML.

378 Chapter 11: N-Tiered Architecture and XML

13 2429 CH11 2.29.2000 2:24 PM Page 378

13 2429 CH11 2.29.2000 2:24 PM Page 379

14 2429 CH12 2.29.2000 2:25 PM Page 380

12

Putting It All Together:
An e-Commerce Example

This chapter contains the commented source code for XCommerce. In this
chapter, you learn

• how to use XML in a medium-sized application

• how XSL and DOM make it easy to build sophisticated applications

• how to build and install a complete application

Building XCommerce

C A U T I O N
This example relies heavily on XSL. However, XSL was not final at the time of this writ-
ing. It is likely that the proposed standard will have changed by the time you read this
book. Some of these changes may create incompatibilities. If you experience problems
running this example, I invite you to check www.quecorp.com/series/by_example/ for
an update.

This section explains how to build and compile the application and where to
copy the various files.

Classpath
XCommerce uses several libraries in addition to its own classes. Therefore,
you need to be sure all the pieces are included; otherwise, it won’t run.
Specifically, you will need the following libraries:

• XML for Java, the XML parser from IBM or another DOM parser. You
download XML for Java from www.alphaworks.ibm.com.

• LotusXSL, the XSL processor or another XSL processor. You download
LotusXSL from www.alphaworks.ibm.com.

• Jetty or another servlet engine. You download Jetty from www.
mortbay.com.

14 2429 CH12 2.29.2000 2:25 PM Page 381

• a JDBC-compliant database. Under Windows, the easiest solution is to
use an ODBC database. JDBC is Java API to interface with a data-
base. It is similar to ODBC and indeed, ODBC databases are also
JDBC-compliant.

You need to tell the Java environment where to find these files. As
explained in Appendix A, this is done through the classpath. The classpath
looks like
-classpath c:\jetty\lib\javax.servlet.jar;

➥c:\lotusxsl\lotusxsl.jar;c:\xml4j\xml4j.jar;.

Obviously, you have to adapt these paths to your machine.

Configuration File
In order to set up the XCommerce configuration files, you need a servlet
engine; see Appendix A.

You also need to define properties similar to those in Listings 12.1, 12.2,
12.3, and 12.4. These listings show Jetty configuration files. Even though
other servlet engines use different formats for configuration, the same prop-
erties must be defined.
Listing 12.1: jetty.prp

configuration for the online shop

shop./.InetAddrPort : 0.0.0.0:80

shop./.Directory./ : ./docs

shop./.Servlet./shop% : shop=com.psol.xcommerce.Shop?

➥./properties/shop.prp

shop./.Servlet./editor$: editor=com.psol.xcommerce.Editor?

➥./properties/viewedit.prp

shop./.Servlet./viewer$: viewer=com.psol.xcommerce.Viewer?

➥./properties/viewedit.prp

configuration for the Emailaholic data server

emailaholic./.InetAddrPort : 0.0.0.0:81

emailaholic./.Directory./ : ./emailaholic

emailaholic./.Servlet./xml : xml=com.psol.xcommerce.XMLServer?

➥./properties/xmlserver.prp

emailaholic./.Servlet./console : console=com.psol.xcommerce.

➥XMLServerConsole?./properties/xmlserver.prp

382 Chapter 12: Putting It All Together: An e-Commerce Example

E X A M P L E

14 2429 CH12 2.29.2000 2:25 PM Page 382

Listing 12.2: shop.prp

merchants.xml=./data/merchants.xml

merchants.xsl=./xsl/merchants.xsl

xmli.orders=./xmli

Listing 12.3: xmlserver.prp

merchant=emailaholic

sql.driver=sun.jdbc.odbc.JdbcOdbcDriver

sql.url=jdbc:odbc:XCommerce

sql.user=SYSDBA

sql.password=masterkey

Listing 12.4: viewedit.prp

editor.xsl=./xsl/editor.xsl

viewer.xsl=./xsl/viewer.xsl

XMLi products

xmli.xml=./data/xmli.xml

xmli.pwd=xmli

xmli.orders=./xmli

Directories
The configuration files require that the files be organized in the following
directories:

• data contains the list of merchants and an XMLi product list.

• xsl contains the style sheet for the shop, with the exception of
Emailaholic-specific style sheets.

• properties contains all of the property files.

• docs is the document directory for the shop. It contains the JavaScript
editor.js.

• emailaholic is the document directory for Emailaholic. It contains
Emailaholic XSL files and images.

• xmli is an empty directory where XMLi orders are stored.

Compiling and Running
Before running this application, you must compile all the Java files. Use
the Java compiler such as:
javac -classpath c:\jetty\lib\javax.servlet.jar;

➥c:\lotusxsl\lotusxsl.jar;c:\xml4j\xml4j.jar;. -sourcepath .

➥ Shop.java

383Building XCommerce

14 2429 CH12 2.29.2000 2:25 PM Page 383

It does not matter in which order you compile the files but you need to
compile them all. It may be convenient to create a batch file to automate
compiling.

Now you are ready to start your Web server. If you use Jetty, use the follow-
ing command line:
java -classpath c:\jetty\lib\javax.servlet.jar;

➥c:\lotusxsl\lotusxsl.jar;c:\xml4j\xml4j.jar;.

➥com.mortbay.Jetty.Server21 properties\jetty.prp

C A U T I O N
Before you attempt to run the application, make sure that your classpath contains all
the libraries that you need. These libraries include the servlet classes, the database
driver, LotusXSL, IBM XML for Java, and the class to the XCommerce servlets them-
selves.

Also be sure you have created the database. This requires creating the Data Source in
ODBC and entering product information with the console servlet.

URLs
Here are the URLs for the application. You may have to substitute the
name of your computer in place of localhost:

• localhost/shop is the entry point for the shop.

• localhost/editor?merchant=xmli for the product editor.

• localhost/viewer?merchant=xmli for the order viewer.

• localhost:81/console for the console for Emailaholic data server.

Database
Emailaholic needs a database. Any JDBC-compliant database will do. The
easiest solution, when running Windows, is probably to use an ODBC-
compliant database. First, you need to create a blank database. The exact
procedure depends on the database you use.

Next, you must create a Data Source with ODBC. In the Control Panel,
double-click the ODBC icon. Select either User DSN or System DSN and
click the Add button. Enter the XCommerce as Data Source name and the
parameters to connect to the blank database you have just created. See
Figure 12.1.

384 Chapter 12: Putting It All Together: An e-Commerce Example

14 2429 CH12 2.29.2000 2:25 PM Page 384

Figure 12.1: Creating the Data Source in ODBC

Before you can use the XML server, you need to create the database schema
and insert a few products in the database. This is what XMLServerConsole is
for. Point your browser to localhost:81/console. First click Create Tables,
(see Figure 12.2). Enter the product information, as shown in Figure 12.3.

385Building XCommerce

Figure 12.2: Creating the database schema

14 2429 CH12 2.29.2000 2:25 PM Page 385

Figure 12.3: Creating products in the database

The Middle Tier
As explained in Chapter 11, “N-Tiered Architecture and XML,” the middle
tier server is a servlet that manages various XML documents. There is a
document for the list of merchants or another for the list of products, and
more. The servlet applies style sheets to them.

The middle tier server is made of the Shop class, shown in Listing 12.5.
Shop decodes the URL and routes the requests to the appropriate object.
Listing 12.5: Shop.java

package com.psol.xcommerce;

import java.io.*;

import java.util.*;

import org.w3c.dom.*;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* Shop manages the shop, using XSL for any output.

*

* @version Sep 10, 1999

386 Chapter 12: Putting It All Together: An e-Commerce Example

14 2429 CH12 2.29.2000 2:25 PM Page 386

* @author Benoît Marchal <bmarchal@pineapplesoft.com>

*/

public class Shop

extends HttpServlet

{

/**

* the merchant list and the shopping cart

*/

protected MerchantCollection merchants;

protected Comlet checkout;

/**

* return the list of merchants

*/

public MerchantCollection getMerchants()

{

return merchants;

}

/**

* initializes the servlet

*/

public void init()

throws ServletException

{

merchants = new MerchantCollection(this);

checkout = new Checkout(this);

}

/**

* handle GET request

* @param request the request received from the client

* @param response interface to the client

* @exception IOException error writing the reply

* @exception ServletException error in processing the request

*/

387The Middle Tier

continues

14 2429 CH12 2.29.2000 2:25 PM Page 387

protected void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException

{

Comlet comlet = translateURL(request);

if(null != comlet)

comlet.doGet(request,response);

else

response.sendError(HttpServletResponse.SC_NOT_FOUND);

}

/**

* handle POST request

* @param request the request received from the client

* @param response interface to the client

* @exception IOException error writing the reply

* @exception ServletException error in processing the request

*/

protected void doPost(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException

{

Comlet comlet = translateURL(request);

if(null != comlet)

comlet.doPost(request,response);

else

response.sendError(HttpServletResponse.SC_NOT_FOUND);

}

/**

* Returns the time it was last modified.

* @param request the request received from the client

* @return time in milliseconds since January 1, 1970 midnight

*/

protected long getLastModified(HttpServletRequest request)

{

try

388 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.5: continued

14 2429 CH12 2.29.2000 2:25 PM Page 388

{

Comlet comlet = translateURL(request);

if(null != comlet)

return comlet.getLastModified();

else

return -1;

}

catch(ServletException e)

{

return -1;

}

}

/**

* decode the URL and select the Comlet that will

* handle the request

* @param request the request received from the client

* @return the Comlet identified in the request

* @exception problem loading one of the object

*/

protected Comlet translateURL(HttpServletRequest request)

throws ServletException

{

String merchantID = null,

pathInfo = request.getPathInfo();

StringTokenizer tokenizer = null;

if(null != pathInfo)

{

tokenizer = new StringTokenizer(pathInfo,”/”);

if(tokenizer.hasMoreTokens())

merchantID = tokenizer.nextToken();

}

if(null == merchantID)

return merchants;

if(merchantID.equals(“checkout”))

return checkout;

Merchant merchant = merchants.getMerchant(merchantID);

389The Middle Tier

continues

14 2429 CH12 2.29.2000 2:25 PM Page 389

String productID = null;

if(tokenizer.hasMoreTokens())

productID = tokenizer.nextToken();

if(null == merchant || null == productID)

return merchant;

else

return merchant.getProduct(productID);

}

}

The objects that really handle the request are derived from Comlet, defined
in Listing 12.6. Comlet defines methods for the GET and POST requests.
Listing 12.6: Comlet.java

package com.psol.xcommerce;

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* Comlet is a subset of the servlet interface, Shop

* delegates HTTP requests to Comlet descendants.

*

* @version Sep 10, 1999

* @author Benoît Marchal <bmarchal@pineapplesoft.com>

*/

public class Comlet

implements ServletConfig

{

/**

* properties

*/

protected ServletConfig servletConfig;

protected long lastModified = -1;

protected Shop shop;

390 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.5: continued

14 2429 CH12 2.29.2000 2:25 PM Page 390

/**

* creates a new Comlet

* @param shop the shop it is part of

*/

public Comlet(Shop shop)

{

this.shop = shop;

}

/**

* return the servlet config

*/

public ServletConfig getServletConfig()

{

return shop.getServletConfig();

}

/**

* return the shop it is part of

*/

public Shop getShop()

{

return shop;

}

/**

* convenience: implements ServletConfig

* @param name the parameter whose value is requested

* @return the parameter value

*/

public String getInitParameter(String name)

{

return shop.getInitParameter(name);

}

/**

391The Middle Tier

continues

14 2429 CH12 2.29.2000 2:25 PM Page 391

* convenience: implements ServletConfig

* @return an enumeration of names

*/

public Enumeration getInitParameterNames()

{

return shop.getInitParameterNames();

}

/**

* convenience: implements ServletConfig

* @return the config object

*/

public ServletContext getServletContext()

{

return shop.getServletContext();

}

/**

* handle GET request

* @param request the request received from the client

* @param response interface to the client

* @exception IOException error writing the reply

* @exception ServletException error in processing the request

*/

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException

{

response.sendError(HttpServletResponse.SC_BAD_REQUEST);

}

/**

* handle POST request

* @param request the request received from the client

* @param response interface to the client

* @exception IOException error writing the reply

* @exception ServletException error in processing the request

392 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.6: continued

14 2429 CH12 2.29.2000 2:25 PM Page 392

*/

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException

{

response.sendError(HttpServletResponse.SC_BAD_REQUEST);

}

/**

* return the time the data was last modified

*/

public long getLastModified()

{

return lastModified;

}

/**

* data has changed, update lastModified

*/

public void freshened()

{

lastModified = System.currentTimeMillis();

}

}

MerchantCollection
URLs in the form /shop are handled by MerchantCollection, which man-
ages a list of merchants in XML. See Listing 12.7. Listing 12.8 is the list of
merchants and Listing 12.9 is the style sheet.
Listing 12.7: MerchantCollection.java

package com.psol.xcommerce;

import java.io.*;

import java.util.*;

import org.w3c.dom.*;

import javax.servlet.*;

import javax.servlet.http.*;

393The Middle Tier

E X A M P L E

continues

14 2429 CH12 2.29.2000 2:25 PM Page 393

/**

* represents a list of merchants

*

* @version Sep 10, 1999

* @author Benoît Marchal <bmarchal@pineapplesoft.com>

*/

public class MerchantCollection

extends Comlet

{

/**

* properties

*/

protected Dictionary merchants = new Hashtable();

protected Document merchantsDocument = null,

merchantsXSL = null;

/**

* creates a new Merchant object

* @param shop the shop it is part of

* @param ServletException error reading the merchant list

*/

public MerchantCollection(Shop shop)

throws ServletException

{

super(shop);

String fname = getInitParameter(“merchants.xml”);

if(null != fname)

merchantsDocument = XMLUtil.parse(fname);

if(null == merchantsDocument)

throw new UnavailableException(shop,”merchants.xml”);

freshened();

Element topLevel = merchantsDocument.getDocumentElement();

Enumeration enumeration =

XMLUtil.extract(topLevel,”merchant”);

while(enumeration.hasMoreElements())

{

394 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.7: continued

14 2429 CH12 2.29.2000 2:25 PM Page 394

Element element =

(Element)enumeration.nextElement();

Merchant merchant =

new Merchant(element,shop);

merchants.put(merchant.getID(),merchant);

}

}

/**

* return a document with the list of merchants

*/

protected Document getDocument()

{

return merchantsDocument;

}

/**

* return the style sheet for the list of merchants

* @exception ServletException error reading the document

*/

protected Document getXSL()

throws ServletException

{

if(null == merchantsXSL)

{

String fname = getInitParameter(“merchants.xsl”);

if(null != fname)

merchantsXSL = XMLUtil.parse(fname);

}

return merchantsXSL;

}

/**

* return a given merchant.

* @param id merchant id

*/

public Merchant getMerchant(String id)

395The Middle Tier

continues

14 2429 CH12 2.29.2000 2:25 PM Page 395

{

return (Merchant)merchants.get(id);

}

/**

* handle GET request

* @param request the request received from the client

* @param response interface to the client

* @exception IOException error writing the reply

* @exception ServletException error in processing the request

*/

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException

{

XMLUtil.transform(getDocument(),

getXSL(),

response.getWriter(),

response.getCharacterEncoding());

}

}

Listing 12.8: Merchants.xml

<?xml version=”1.0”?>

<merchants>

<merchant id=”xmli”>

<name>XMLi</name>

<description>Your specialist for XML products!</description>

<products href=”./data/xmli.xml”/>

<stylesheet-all href=”./xsl/products.xsl”/>

<stylesheet href=”./xsl/product.xsl”/>

</merchant>

<merchant id=”emailaholic”>

<name>Emailaholic.com</name>

<description>The largest electronic shop.

All products delivered via email!</description>

<products update=”3600”

href=”http://localhost:81/xml”/>

396 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.7: continued

14 2429 CH12 2.29.2000 2:25 PM Page 396

<stylesheet-all

href=”http://localhost:81/products.xsl”/>

<stylesheet

href=”http://localhost:81/product.xsl”/>

<post href=”http://localhost:81/xml”

user=”SYSDBA” password=”masterkey”/>

</merchant>

</merchants>

Listing 12.9: Merchants.xsl

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”

xmlns=”http://www.w3.org/TR/REC-html40”>

<xsl:output method=”html”/>

<xsl:template match=”/”>

<HTML>

<HEAD>

<TITLE>Online Shop</TITLE>

</HEAD>

<BODY>

<P>Visit one of the following prestigious merchants:</P>

<xsl:for-each select=”merchants/merchant”>

<P><A><xsl:attribute name=”HREF”>shop/<xsl:value-of

select=”@id”/></xsl:attribute><xsl:value-of

select=”name”/>

<xsl:value-of select=”description”/>
</P>

</xsl:for-each>

</BODY>

</HTML>

</xsl:template>

</xsl:stylesheet>

Merchant
Requests to /shop/emailaholic are forwarded to Merchant objects. Listing
12.10 is the Merchant class. It uses style sheets similar to Listings 12.11
and 12.12.

397The Middle Tier

E X A M P L E

14 2429 CH12 2.29.2000 2:25 PM Page 397

Listing 12.10: Merchant.java

package com.psol.xcommerce;

import java.io.*;

import java.util.*;

import org.w3c.dom.*;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* a merchant is a collection of products

*

* @version Sep 10, 1999

* @author Benoît Marchal <bmarchal@pineapplesoft.com>

*/

public class Merchant

extends Comlet

{

/**

* properties

*/

protected Element merchantElement;

protected Dictionary products = null;

protected Document productsDocument = null,

productsXSL = null,

productXSL = null;

protected String id;

protected long expire = Long.MAX_VALUE;

/**

* creates a new Merchant object

* @param element the merchant element

* @param shop the shop it is part of

*/

public Merchant(Element element,Shop shop)

{

super(shop);

398 Chapter 12: Putting It All Together: An e-Commerce Example

14 2429 CH12 2.29.2000 2:25 PM Page 398

merchantElement = element;

}

/**

* return the element id

*/

public String getID()

{

return merchantElement.getAttribute(“id”);

}

/**

* return the post URL

*/

public String getPostURL()

{

Element postElement =

XMLUtil.extractFirst(merchantElement,”post”);

if(null != postElement)

return postElement.getAttribute(“href”);

else

return null;

}

/**

* return the post user

*/

public String getPostUser()

{

Element postElement =

XMLUtil.extractFirst(merchantElement,”post”);

if(null != postElement)

return postElement.getAttribute(“user”);

else

return null;

}

399The Middle Tier

continues

14 2429 CH12 2.29.2000 2:25 PM Page 399

/**

* return the post password

*/

public String getPostPassword()

{

Element postElement =

XMLUtil.extractFirst(merchantElement,”post”);

if(null != postElement)

return postElement.getAttribute(“password”);

else

return null;

}

/**

* return the list of products

* @exception ServletException error reading the document

*/

protected Document getDocument()

throws ServletException

{

if(null == productsDocument ||

expire < System.currentTimeMillis())

{

Element productsElement =

XMLUtil.extractFirst(merchantElement,”products”);

if(null != productsElement)

{

String fname =

productsElement.getAttribute(“href”);

String update =

productsElement.getAttribute(“update”);

if(!XMLUtil.isEmpty(fname))

{

productsDocument = XMLUtil.parse(fname);

freshened();

productXSL = null;

productsXSL = null;

400 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.10: continued

14 2429 CH12 2.29.2000 2:25 PM Page 400

}

if(!XMLUtil.isEmpty(update))

{

long u = Long.parseLong(update) * 1000;

expire = System.currentTimeMillis() + u;

}

}

}

return productsDocument;

}

/**

* return the style sheet for a list of products

* @exception ServletException error reading the document

*/

protected Document getXSL()

throws ServletException

{

if(null == productsXSL)

{

Element productsXSLElement =

XMLUtil.extractFirst(merchantElement,

“stylesheet-all”);

if(null != productsXSLElement)

{

String fname =

productsXSLElement.getAttribute(“href”);

if(!XMLUtil.isEmpty(fname))

productsXSL = XMLUtil.parse(fname);

}

}

return productsXSL;

}

/**

* return the style sheet for one product

* @exception ServletException error reading the document

401The Middle Tier

continues

14 2429 CH12 2.29.2000 2:25 PM Page 401

*/

public Document getProductXSL()

throws ServletException

{

if(null == productXSL)

{

Element productXSLElement =

XMLUtil.extractFirst(merchantElement,”stylesheet”);

if(null != productXSLElement)

{

String fname =

productXSLElement.getAttribute(“href”);

if(!XMLUtil.isEmpty(fname))

productXSL = XMLUtil.parse(fname);

}

}

return productXSL;

}

/**

* return a given product

* @param id product index

*/

public Product getProduct(String id)

throws ServletException

{

if(null == products ||

expire < System.currentTimeMillis())

{

Document productsDocument = getDocument();

if(null != productsDocument)

{

Element topLevel =

productsDocument.getDocumentElement();

Enumeration enumeration =

XMLUtil.extract(topLevel,”product”);

products = new Hashtable();

402 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.10: continued

14 2429 CH12 2.29.2000 2:25 PM Page 402

while(enumeration.hasMoreElements())

{

Element element =

(Element)enumeration.nextElement();

Product product =

new Product(element,this,shop);

products.put(product.getID(),product);

}

}

}

// re-test: reading the product may fail

if(null != products)

return (Product)products.get(id);

else

return null;

}

/**

* handle GET request

* @param request the request received from the client

* @param response interface to the client

* @exception IOException error writing the reply

* @exception ServletException error in processing the request

*/

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException

{

XMLUtil.transform(getDocument(),

getXSL(),

response.getWriter(),

response.getCharacterEncoding());

}

}

403The Middle Tier

14 2429 CH12 2.29.2000 2:25 PM Page 403

Product
Requests for a specific product take the form /shop/xmli/1. They are
forwarded to Product objects, as shown in Listing 12.11.
Listing 12.11: Product.java

package com.psol.xcommerce;

import java.io.*;

import java.text.*;

import org.w3c.dom.*;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* a product is various information like price

*

* @version Sep 10, 1999

* @author Benoît Marchal <bmarchal@pineapplesoft.com>

*/

public class Product

extends Comlet

{

/**

* properties

*/

protected Element productElement;

protected Document productDocument;

protected Merchant merchant;

/**

* creates a new product

* @param element XML description of the product

* @param merchant merchant owning this product

* @param shop the shop it is part of

*/

public Product(Element element,

Merchant merchant,

Shop shop)

{

404 Chapter 12: Putting It All Together: An e-Commerce Example

14 2429 CH12 2.29.2000 2:25 PM Page 404

super(shop);

productElement = element;

this.merchant = merchant;

}

/**

* returns the DOM Element

*/

public Element getElement()

{

return productElement;

}

/**

* returns the merchant

*/

public Merchant getMerchant()

{

return merchant;

}

/**

* return the product id

*/

public String getID()

{

return productElement.getAttribute(“id”);

}

/**

* return the product name

*/

public String getName()

{

Element nameElement =

XMLUtil.extractFirst(productElement,”name”);

return XMLUtil.getText(nameElement);

405The Middle Tier

continues

14 2429 CH12 2.29.2000 2:25 PM Page 405

}

/**

* return the product price

*/

public String getPrice()

{

Element priceElement =

XMLUtil.extractFirst(productElement,”price”);

return XMLUtil.getText(priceElement);

}

/**

* return a document around the product

*/

protected Document getDocument()

{

if(null == productDocument)

{

productDocument = XMLUtil.createDocument(productElement);

Element element = productDocument.getDocumentElement();

element.setAttribute(“merchant”,merchant.getID());

}

return productDocument;

}

/**

* handle GET request

* @param request the request received from the client

* @param response interface to the client

* @exception IOException error writing the reply

* @exception ServletException error in processing the request

*/

public void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException

{

406 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.11: continued

14 2429 CH12 2.29.2000 2:25 PM Page 406

XMLUtil.transform(getDocument(),

merchant.getProductXSL(),

response.getWriter(),

response.getCharacterEncoding());

}

/**

* return the time the data was last modified

*/

public long getLastModified()

{

return merchant.getLastModified();

}

}

Checkout
Listing 12.12 handles requests to check out of the shop, which is used for
purchases. Checkout collects information about the buyer and creates an
order in XML. The order is either saved as a local file or posted to the mer-
chant Web server. Posting to a remote site is done through HTTPPost,
defined in Listing 12.13.
Listing 12.12: Checkout.java

package com.psol.xcommerce;

import java.io.*;

import java.text.*;

import java.util.*;

import org.w3c.dom.*;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* presents the invoice and emails it

*

* @version Sep 10, 1999

* @author Benoît Marchal <bmarchal@pineapplesoft.com>

*/

407The Middle Tier

E X A M P L E

continues

14 2429 CH12 2.29.2000 2:25 PM Page 407

public class Checkout

extends Comlet

{

/**

* creates a new Checkout object

* @param shop the shop it is part of

*/

public Checkout(Shop shop)

{

super(shop);

}

/**

* handle POST request

* @param request the request received from the client

* @param response interface to the client

* @exception IOException error writing the reply

* @exception ServletException error in processing the request

*/

public void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

if(isAddressComplete(request))

doSaveOrder(request,response);

else

doCollectData(request,response);

}

/**

* return true if the address is complete

* @param request client request

*/

protected boolean isAddressComplete(HttpServletRequest request)

{

// region is not mandatory

String[] fields =

408 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.12: continued

14 2429 CH12 2.29.2000 2:25 PM Page 408

{

“name”, “street”, “postal-code”,

“locality”, “country”, “email”

};

int found = 0;

for(int i = 0;i < fields.length;i++)

{

String value = request.getParameter(fields[i]);

if(!XMLUtil.isEmpty(value))

found++;

}

return found == fields.length;

}

/**

* save the order

* @param request the request received from the client

* @param response interface to the client

* @exception IOException error writing the reply

* @exception ServletException error in processing the request

*/

public void doSaveOrder(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

String productid = request.getParameter(“product”),

merchantid = request.getParameter(“merchant”);

Product product = getProduct(merchantid,productid);

if(null == product)

{

response.sendError(HttpServletResponse.SC_NOT_FOUND);

return;

}

Merchant merchant = product.getMerchant();

String postURL = merchant.getPostURL();

Writer writer = null;

if(null != postURL)

409The Middle Tier

continues

14 2429 CH12 2.29.2000 2:25 PM Page 409

writer = new StringWriter();

else

{

String directory = getInitParameter(merchant.getID()

+ “.orders”),

// should be enough to avoid duplicates

fname = String.valueOf(System.currentTimeMillis())

+ “.xml”;

File file = new File(directory,fname);

writer = new FileWriter(file);

}

writer.write(“<?xml version=\”1.0\”?>”);

writer.write(“<order>”);

writer.write(“<buyer”);

writeAttribute(“name”,request,writer);

writeAttribute(“street”,request,writer);

writeAttribute(“region”,request,writer);

writeAttribute(“postal-code”,request,writer);

writeAttribute(“locality”,request,writer);

writeAttribute(“country”,request,writer);

writeAttribute(“email”,request,writer);

writer.write(“/>”);

writer.write(“<product”);

writeAttribute(“quantity”,request,writer);

writer.write(“ id=\””);

writer.write(product.getID());

writer.write(“\” name=\””);

writer.write(product.getName());

writer.write(“\” price=\””);

writer.write(product.getPrice());

writer.write(“\”/></order>”);

writer.close();

if(null != postURL)

{

Dictionary parameters = new Hashtable();

String user = merchant.getPostUser(),

password = merchant.getPostPassword(),

410 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.12: continued

14 2429 CH12 2.29.2000 2:25 PM Page 410

xmlData = writer.toString();

parameters.put(“user”,user);

parameters.put(“password”,password);

parameters.put(“xmldata”,xmlData);

HTTPPost post = new HTTPPost(postURL,parameters);

post.doRequest();

}

writer = response.getWriter();

writer.write(“<HTML><HEAD><TITLE>Checkout</TITLE></HEAD>”);

writer.write(“<BODY><P>Thank you for shopping with us!”);

writer.write(“
<A HREF=\””);

writer.write(request.getServletPath());

writer.write(“\”>Return to the shop”);

writer.write(“</BODY></HTML>”);

writer.flush();

}

/**

* helper method: return the product

*/

protected Product getProduct(String merchantid,

String productid)

throws ServletException

{

MerchantCollection merchants = shop.getMerchants();

Merchant merchant = merchants.getMerchant(merchantid);

if(null != merchant)

return merchant.getProduct(productid);

else

return null;

}

/**

* helper method: write one attribute

*/

protected void writeAttribute(String id,

HttpServletRequest request,

411The Middle Tier

continues

14 2429 CH12 2.29.2000 2:25 PM Page 411

Writer writer)

throws IOException

{

String value = request.getParameter(id);

if(!XMLUtil.isEmpty(value))

{

writer.write(“ “);

writer.write(id);

writer.write(“=\””);

writer.write(value);

writer.write(“\””);

}

}

/**

* collect buyer data

* @param request the request received from the client

* @param response interface to the client

* @exception IOException error writing the reply

* @exception ServletException error in processing the request

*/

public void doCollectData(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

String productid = request.getParameter(“product”),

merchantid = request.getParameter(“merchant”),

quantity = request.getParameter(“quantity”);

Product product = getProduct(merchantid,productid);

if(null == product)

{

response.sendError(HttpServletResponse.SC_NOT_FOUND);

return;

}

Writer writer = response.getWriter();

writer.write(“<HTML><HEAD><TITLE>Checkout</TITLE></HEAD>”);

writer.write(“<BODY><P>Enter your name and address:”);

412 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.12: continued

14 2429 CH12 2.29.2000 2:25 PM Page 412

writer.write(“<FORM METHOD=\”POST\” ACTION=\””);

writer.write(request.getServletPath() + “/checkout”);

writer.write(“\”><TABLE BORDER=\”0\”>”);

writeRow(“Name *:”,”name”,request,writer);

writeRow(“Street *:”,”street”,request,writer);

writeRow(“Region:”,”region”,request,writer);

writeRow(“ZIP or postal-code *:”,”postal-code”,request,writer);

writeRow(“Locality *:”,”locality”,request,writer);

writeRow(“Country *:”,”country”,request,writer);

writeRow(“Email *:”,”email”,request,writer);

writer.write(“</TABLE>”);

writer.write(“Your order: “);

writer.write(quantity);

writer.write(“ * “);

writer.write(product.getName());

writer.write(“ at “);

writer.write(product.getPrice());

writer.write(“ each
”);

writer.write(“<INPUT TYPE=\”HIDDEN\” NAME=\”product\””);

writer.write(“ VALUE=\””);

writer.write(productid);

writer.write(“\”>”);

writer.write(“<INPUT TYPE=\”HIDDEN\” NAME=\”merchant\””);

writer.write(“ VALUE=\””);

writer.write(merchantid);

writer.write(“\”>”);

writer.write(“<INPUT TYPE=\”HIDDEN\” NAME=\”quantity\””);

writer.write(“ VALUE=\””);

writer.write(quantity);

writer.write(“\”>”);

writer.write(“<INPUT TYPE=\”SUBMIT\” VALUE=\”Order\”>”);

writer.write(“</FORM></HTML>”);

writer.flush();

}

/**

* helper method: write one row

413The Middle Tier

continues

14 2429 CH12 2.29.2000 2:25 PM Page 413

*/

protected void writeRow(String label,

String id,

HttpServletRequest request,

Writer writer)

throws IOException

{

writer.write(“<TR><TD>”);

writer.write(label);

writer.write(“</TD><TD>”);

writer.write(“<INPUT TYPE=\”TEXT\” NAME=\””);

writer.write(id);

writer.write(“\””);

String value = request.getParameter(id);

if(!XMLUtil.isEmpty(value))

{

writer.write(“ VALUE=\””);

writer.write(value);

writer.write(“\””);

}

writer.write(“></TD></TR>”);

}

}

Listing 12.13: HTTPPost.java

package com.psol.xcommerce;

import java.io.*;

import java.net.*;

import java.util.*;

/**

* Does an HTTP POST.

*

* @version Sep 10, 1999

* @author Benoît Marchal <bmarchal@pineapplesoft.com>

*/

414 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.12: continued

14 2429 CH12 2.29.2000 2:25 PM Page 414

public class HTTPPost

{

/**

* properties

*/

protected URL url;

protected String query;

/**

* Creates a new HTTPPost.

* @param url URL to connect to

* @parameters POST request parameter

*/

public HTTPPost(URL url,Dictionary parameters)

{

this.url = url;

query = buildQuery(parameters);

}

/**

* Creates a new HTTPPost.

* @param url URL to connect to

* @parameters POST request parameter

* @exception MalformedURLException if the URL is invalid

*/

public HTTPPost(String url,Dictionary parameters)

throws MalformedURLException

{

this(new URL(url),parameters);

}

/**

* executes the post request

* @exception IOException error posting the data

*/

public void doRequest()

throws IOException

415The Middle Tier

continues

14 2429 CH12 2.29.2000 2:25 PM Page 415

{

// this stupid thing does not default to 80...

int port = url.getPort();

if(port == -1)

port = 80;

Socket s = new Socket(url.getHost(),port);

PrintStream o = new PrintStream(s.getOutputStream());

o.print(“POST “); o.print(url.getFile());

o.print(“ HTTP/1.0\r\n”);

o.print(“Accept: text/html text/xml\r\n”);

o.print(“Host: “); o.print(url.getHost()); o.print(“\r\n”);

o.print(“Content-type: “);

o.print(“application/x-www-form-urlencoded\r\n”);

o.print(“Content-length: “); o.print(query.length());

o.print(“\r\n\r\n”);

o.print(query);

o.print(“\r\n”);

InputStream i = s.getInputStream();

StringBuffer reply = new StringBuffer();

int c = i.read();

boolean firstLine = true;

while(c != -1)

{

if(firstLine)

if(c == ‘\r’ || c == ‘\n’)

firstLine = false;

else

reply.append((char)c);

c = i.read();

}

String stReply = reply.toString();

int returnCode = Integer.parseInt(stReply.substring(9,12));

if(!(returnCode >= 200 && returnCode < 300))

throw new ProtocolException(stReply.substring(13));

}

/**

416 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.13: continued

14 2429 CH12 2.29.2000 2:25 PM Page 416

* format the request according to the proper encoding

* @param parameters query parameters

* @return string with the query properly formatted

*/

protected String buildQuery(Dictionary parameters)

{

StringBuffer request = new StringBuffer();

Enumeration keys = parameters.keys();

String key = null;

boolean first = true;

while(keys.hasMoreElements())

{

if(!first)

request.append(‘&’);

else

first = false;

key = (String)keys.nextElement();

request.append(key);

request.append(‘=’);

request.append(

URLEncoder.encode((String)parameters.get(key)));

// request.append(“\r\n”);

}

return request.toString();

}

}

Encapsulating XML Tools
You use the DOM interface to encapsulate tools in XCommerce; however,
there are holes in DOM. In particular, there is no standard way to create or
parse XML documents. The XSL processor is even worse because it has no
API at all.

The class XMLUtil encapsulates the vendor-specific part in the XML parser
and XSL processor. If you later decide to use another XML parser, XMLUtil
is the only class that needs updating. XMLUtil is defined in Listing 12.14.

417Encapsulating XML Tools

E X A M P L E

14 2429 CH12 2.29.2000 2:25 PM Page 417

Listing 12.14: XMLUtil.java

package com.psol.xcommerce;

import java.io.*;

import java.util.*;

import org.xml.sax.*;

import org.w3c.dom.*;

import com.lotus.xsl.*;

import javax.servlet.*;

import com.ibm.xml.dom.*;

import com.ibm.xml.parsers.*;

import com.lotus.xml.*;

import com.lotus.xml.xml4j2dom.*;

/**

* XMLUtil isolates non-portable aspects of DOM, calling

* XSL processor and some utility functions.

* This version is for IBM’s XML for Java, to use another

* processor this is the only class to change.

*

* @version Sep 10, 1999

* @author Benoît Marchal <bmarchal@pineapplesoft.com>

*/

class XMLUtil

{

/**

* the HTML doctype

*/

protected static final String DOCTYPE =

“<!DOCTYPE HTML PUBLIC \”-//W3C//DTD HTML 4.0 “ +

“Transitional//EN\”>”;

/**

* parses a document with DOM

* @param systemID system id (URL) for the document

* @return DOM Document

* @exception ServletException error parsing the document

418 Chapter 12: Putting It All Together: An e-Commerce Example

14 2429 CH12 2.29.2000 2:25 PM Page 418

*/

public static Document parse(String systemID)

throws ServletException

{

try

{

DOMParser parser = new DOMParser();

parser.parse(systemID);

return parser.getDocument();

}

catch(SAXException e)

{

throw new ServletException(e);

}

catch(IOException e)

{

throw new ServletException(e);

}

}

/**

* parses a document with DOM

* @param reader reader for the document

* @return DOM Document

* @exception ServletException error parsing the document

*/

public static Document parse(Reader reader)

throws ServletException

{

try

{

InputSource inputSource = new InputSource(reader);

DOMParser parser = new DOMParser();

parser.parse(inputSource);

return parser.getDocument();

}

catch(SAXException e)

419Encapsulating XML Tools

continues

14 2429 CH12 2.29.2000 2:25 PM Page 419

{

throw new ServletException(e);

}

catch(IOException e)

{

throw new ServletException(e);

}

}

/**

* turns DOM tree in a string

* @param node root of the tree

*/

public static String toString(Node node)

{

// IBM parser has no “saveAs” method or we would use it

// this version does not handle all node types

StringBuffer buffer = new StringBuffer();

switch(node.getNodeType())

{

case Node.ATTRIBUTE_NODE:

{

Attr attr = (Attr)node;

buffer.append(‘ ‘);

buffer.append(attr.getName());

buffer.append(“=\””);

buffer.append(attr.getValue());

buffer.append(‘\”’);

break;

}

case Node.DOCUMENT_NODE:

{

Document document = (Document)node;

Element topLevel = document.getDocumentElement();

buffer.append(“<?xml version=\”1.0\”?>”);

buffer.append(toString(topLevel));

break;

420 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.14: continued

14 2429 CH12 2.29.2000 2:25 PM Page 420

}

case Node.ELEMENT_NODE:

{

Element element = (Element)node;

buffer.append(“<”);

buffer.append(element.getTagName());

NamedNodeMap attrs = element.getAttributes();

for(int i = 0;i < attrs.getLength();i++)

buffer.append(toString(attrs.item(i)));

NodeList children = node.getChildNodes();

if(children.getLength() == 0)

// shorthand for empty element

buffer.append(“/>”);

else

{

buffer.append(“>”);

for(int i = 0;i < children.getLength();i++)

buffer.append(toString(children.item(i)));

buffer.append(“</”);

buffer.append(element.getTagName());

buffer.append(“>”);

}

break;

}

case Node.TEXT_NODE:

{

Text text = (Text)node;

buffer.append(text.getData());

break;

}

default:

throw new NotImplementedError();

}

return buffer.toString();

}

/**

421Encapsulating XML Tools

continues

14 2429 CH12 2.29.2000 2:25 PM Page 421

* creates an empty DOM document

* @return DOM document

*/

public static Document createDocument()

{

Document document = new DocumentImpl();

return document;

}

/**

* creates a DOM document with a top-level element

* @param element top-level element

* @return DOM document

*/

public static Document createDocument(Element element)

{

Document document = createDocument();

Node celement = cloneNode(document,element);

document.appendChild(celement);

return document;

}

/**

* clone a DOM Node in the context of a Document

* Element.cloneNode() does not work when copying elements

* from one document to another, the clone remains attached

* to original document

* @param document document to attach the clone to

* @param node node to clone

* @return the clone

*/

public static Node cloneNode(Document document,

Node node)

{

// o = original

// c = clone

switch(node.getNodeType())

422 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.14: continued

14 2429 CH12 2.29.2000 2:25 PM Page 422

{

case Node.ATTRIBUTE_NODE:

{

Attr o = (Attr)node,

c = document.createAttribute(o.getName());

c.setValue(o.getValue());

return c;

}

case Node.ELEMENT_NODE:

{

Element o = (Element)node,

c = document.createElement(o.getTagName());

NodeList children = o.getChildNodes();

for(int i = 0;i < children.getLength();i++)

{

Node n = cloneNode(document,children.item(i));

c.appendChild(n);

}

NamedNodeMap attrs = o.getAttributes();

for(int i = 0;i < attrs.getLength();i++)

{

Attr a = (Attr)cloneNode(document,attrs.item(i));

c.setAttributeNode(a);

}

return c;

}

case Node.TEXT_NODE:

{

Text o = (Text)node,

c = document.createTextNode(o.getData());

return c;

}

default:

throw new NotImplementedError();

}

}

423Encapsulating XML Tools

continues

14 2429 CH12 2.29.2000 2:25 PM Page 423

/**

* apply a style sheet and prints the result

* @param document original document

* @param xsl style sheet

* @param writer output writer

* @param encoding character encoding

*/

public static void transform(Document document,

Document xsl,

PrintWriter writer,

String encoding)

throws ServletException

{

XML4JLiaison4dom liaison = new XML4JLiaison4dom();

XSLTInputSource documentIn = new XSLTInputSource(document),

xslIn = new XSLTInputSource(xsl);

XSLTResultTarget result = new XSLTResultTarget(writer);

try

{

XSLProcessor xslProcessor = new XSLProcessor(liaison);

xslProcessor.process(documentIn,xslIn,result);

}

catch(Exception e)

{

throw new ServletException(e);

}

}

/**

* retrieve elements in the children of a node

* it assumes no recursive structure, in other

* word in products/product/related/product,

* it would NOT find the second product

* @param element top of tree

424 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.14: continued

14 2429 CH12 2.29.2000 2:25 PM Page 424

* @param name element we are looking for

* @return an enumeration of the elements found

*/

public static Enumeration extract(Element element,String name)

{

// ultimately replace with a XQL engine

Vector vector = new Vector();

extract(element,name,vector);

return vector.elements();

}

/**

* retrieve the first element in the children of a node

* @param element top of tree

* @param name element we are looking for

* @return an enumeration of the elements found

*/

public static Element extractFirst(Element element,

String name)

{

Vector vector = new Vector();

extract(element,name,vector); // not optimized

if(vector.size() > 0)

return (Element)vector.firstElement();

else

return null;

}

/**

* helper method for extract

* @param node top of tree

* @param name element we are looking for

* @return an enumeration of the elements found

*/

protected static void extract(Node node,

String name,

Vector vector)

425Encapsulating XML Tools

continues

14 2429 CH12 2.29.2000 2:25 PM Page 425

{

if(node.getNodeType() == Node.ELEMENT_NODE)

{

if(node.getNodeName().equals(name))

// we stop, so it does not work with

// recursive structures

vector.addElement(node);

else

{

NodeList children = node.getChildNodes();

for(int i = 0;i < children.getLength();i++)

extract(children.item(i),name,vector);

}

}

}

/**

* returns the text in the node

* @param node the node to read from

* @return the text in the node

*/

public static String getText(Node node)

{

StringBuffer text = new StringBuffer();

if(node.getNodeType() == Node.ELEMENT_NODE)

{

NodeList children = node.getChildNodes();

for(int i = 0;i < children.getLength();i++)

{

Node n = children.item(i);

if(n.getNodeType() == Node.TEXT_NODE)

{

Text t = (Text)n;

text.append(t.getData());

}

}

}

426 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.14: continued

14 2429 CH12 2.29.2000 2:25 PM Page 426

return text.toString();

}

/**

* check if a string is empty

* @param string string to test

* @return true if empty, false otherwise

*/

public static boolean isEmpty(String string)

{

if(null != string)

return string.trim().length() == 0;

else

return true;

}

/**

* Write the input in XML (or HTML) by escaping what

* must be escaped.

* @param writer write on this

* @param string string to write

* @exception IOException error writing

*/

public static void writeInXML(Writer writer,String string)

throws IOException

{

for(int i = 0;i < string.length();i++)

{

char c = string.charAt(i);

if(c == ‘<’)

writer.write(“<”);

else if(c == ‘&’)

writer.write(“&”);

else

writer.write(c);

}

}

}

427Encapsulating XML Tools

14 2429 CH12 2.29.2000 2:25 PM Page 427

XMLUtil throws a NotImplementedError exception when it hits something
that is currently not implemented. It is better to debug applications that
clearly report their limits. NotImplementedError is defined in Listing 12.15.
Listing 12.15: NotImplementedError.java

package com.psol.xcommerce;

/**

* As the name implies, it signals that something is not yet

* implemented. It is cleaner than hijacking some other error

* core. In particular, it saves on debugging! No trying to

* figure out why something failed when it’s not there yet.

*

* @version Sep 10, 1999

* @author Benoît Marchal <bmarchal@pineapplesoft.com>

*/

public class NotImplementedError

extends Error

{

/**

* constructs a NotImplementedError with no specified detail message

*/

public NotImplementedError()

{

super();

}

/**

* constructs a NotImplementedError with a detail message

* @param st detail message

*/

public NotImplementedError(String st)

{

super(st);

}

}

428 Chapter 12: Putting It All Together: An e-Commerce Example

14 2429 CH12 2.29.2000 2:25 PM Page 428

The Data Tier
Listing 12.16 shows the data tier for Emailaholic. This data tier can gener-
ate a list of products in response to GET requests. It also accepts orders sent
with POST requests. For security purposes, the database username and
password must be provided.
Listing 12.16: XMLServer.java

package com.psol.xcommerce;

import java.io.*;

import java.sql.*;

import java.text.*;

import org.w3c.dom.*;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* XMLServer returns database records in XML.

*

* @version Dec 23, 1999

* @author Benoît Marchal <bmarchal@pineapplesoft.com>

*/

public class XMLServer

extends HttpServlet

{

/**

* currency formater for numbers

*/

protected NumberFormat formatter =

NumberFormat.getCurrencyInstance();

/**

* process GET request

* @param request HTTP request

* @param response hold the response

* @exception ServletException error processing the request

* @exception IOException error writing the result

429The Data Tier

E X A M P L E

continues

14 2429 CH12 2.29.2000 2:25 PM Page 429

*/

protected void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

response.setContentType(“application/xml”);

Writer writer = response.getWriter();

String sqlDriver = getInitParameter(“sql.driver”),

sqlURL = getInitParameter(“sql.url”),

sqlUser = getInitParameter(“sql.user”),

sqlPassword = getInitParameter(“sql.password”),

merchant = getInitParameter(“merchant”);

writer.write(“<?xml version=\”1.0\”?>”);

writer.write(“<products merchant=\””);

writer.write(merchant);

writer.write(“\”>”);

try

{

Class.forName(sqlDriver);

Connection connection =

DriverManager.getConnection(sqlURL,

sqlUser,

sqlPassword);

try

{

Statement stmt = connection.createStatement();

try

{

ResultSet rs =

stmt.executeQuery(“select id, name, “ +

“manufacturer, img, warranty, “ +

“description, price from products”);

while(rs.next())

{

writer.write(“<product id=\””);

writer.write(String.valueOf(rs.getInt(1)));

writer.write(“\” xmlns:em=\”http://www.emailaholic”);

430 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.16: continued

14 2429 CH12 2.29.2000 2:25 PM Page 430

writer.write(“.com/xt/1.0\”><name>”);

writer.write(rs.getString(2));

writer.write(“</name><em:manufacturer>”);

writer.write(rs.getString(3));

writer.write(“</em:manufacturer><em:image>”);

writer.write(rs.getString(4));

writer.write(“</em:image><em:warranty>”);

writer.write(rs.getString(5));

writer.write(“</em:warranty><description>”);

writer.write(rs.getString(6));

writer.write(“</description><price>”);

writer.write(formatter.format(rs.getDouble(7)));

writer.write(“</price></product>”);

}

}

finally

{

stmt.close();

}

}

finally

{

connection.close();

}

}

catch(ClassNotFoundException e)

{

throw new ServletException(e);

}

catch(SQLException e)

{

throw new ServletException(e);

}

writer.write(“</products>”);

writer.flush();

}

431The Data Tier

continues

14 2429 CH12 2.29.2000 2:25 PM Page 431

/**

* process POST request

* @param request HTTP request

* @param response hold the response

* @exception ServletException error processing the request

* @exception IOException error writing the result

*/

protected void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

// there is no error checking at all

// if incorrect, throws an exception:

// it goes to a computer so it’s for technicians anyway

String sqlDriver = getInitParameter(“sql.driver”),

sqlURL = getInitParameter(“sql.url”),

sqlUser = request.getParameter(“user”),

sqlPassword = request.getParameter(“password”),

xmlData = request.getParameter(“xmldata”);

Reader reader = new StringReader(xmlData);

Document orderDocument = XMLUtil.parse(reader);

Element orderElement = orderDocument.getDocumentElement(),

buyerElement =

XMLUtil.extractFirst(orderElement,”buyer”),

productElement =

XMLUtil.extractFirst(orderElement,”product”);

String name = buyerElement.getAttribute(“name”),

street = buyerElement.getAttribute(“street”),

region = buyerElement.getAttribute(“region”),

postal_code =

buyerElement.getAttribute(“postal-code”),

locality = buyerElement.getAttribute(“locality”),

country = buyerElement.getAttribute(“country”),

email = buyerElement.getAttribute(“email”),

productid = productElement.getAttribute(“id”),

productname = productElement.getAttribute(“name”),

432 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.16: continued

14 2429 CH12 2.29.2000 2:25 PM Page 432

productprice = productElement.getAttribute(“price”),

productquantity =

productElement.getAttribute(“quantity”);

try

{

Class.forName(sqlDriver);

Connection connection =

DriverManager.getConnection(sqlURL,

sqlUser,

sqlPassword);

try

{

PreparedStatement stmt =

connection.prepareStatement(

“insert into orders (name,street,region,” +

“postal_code,locality,country,email,” +

“productid,productname,productprice,” +

“productquantity) “ +

“values(?,?,?,?,?,?,?,?,?,?,?)”);

try

{

stmt.setString(1,name);

stmt.setString(2,street);

stmt.setString(3,region);

stmt.setString(4,postal_code);

stmt.setString(5,locality);

stmt.setString(6,country);

stmt.setString(7,email);

stmt.setString(8,productid);

stmt.setString(9,productname);

stmt.setDouble(10,

formatter.parse(productprice).doubleValue());

stmt.setString(11,productquantity);

stmt.executeUpdate();

connection.commit();

433The Data Tier

continues

14 2429 CH12 2.29.2000 2:25 PM Page 433

}

finally

{

stmt.close();

}

}

finally

{

connection.close();

}

}

catch(ClassNotFoundException e)

{

throw new ServletException(e);

}

catch(SQLException e)

{

throw new ServletException(e);

}

catch(ParseException e)

{

throw new ServletException(e);

}

response.setStatus(HttpServletResponse.SC_OK);

response.setContentType(“text/xml”);

Writer writer = response.getWriter();

writer.write(“<?xml version=\”1.0\”?>”);

writer.write(“<status>200</status>”);

writer.flush();

}

}

Listing 12.17 is XMLServerConsole, a simple management interface for the
database.

434 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.16: continued

14 2429 CH12 2.29.2000 2:25 PM Page 434

Listing 12.17: XMLServerConsole.java

package com.psol.xcommerce;

import java.io.*;

import java.sql.*;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* Simple console to create database and enter data in

* the SQL database.

*

* @version Dec 23, 1999

* @author Benoît Marchal <bmarchal@pineapplesoft.com>

*/

public class XMLServerConsole

extends HttpServlet

{

/**

* handles GET request

* @param request HTTP request

* @param response hold the response

* @exception SerlvetException error handling the request

* @exception IOException error writing the reply

*/

protected void doGet(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

doProcess(request,response);

}

/**

* handles GET request

* @param request HTTP request

* @param response hold the response

* @exception SerlvetException error handling the request

435The Data Tier

continues

14 2429 CH12 2.29.2000 2:25 PM Page 435

* @exception IOException error writing the reply

*/

protected void doPost(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

doProcess(request,response);

}

/**

* GET and POST requests are forwarded here

* @param request HTTP request

* @param response hold the response

* @exception SerlvetException error handling the request

* @exception IOException error writing the reply

*/

protected void doProcess(HttpServletRequest request,

HttpServletResponse response)

throws ServletException, IOException

{

String sqlDriver = getInitParameter(“sql.driver”),

sqlURL = getInitParameter(“sql.url”),

sqlUser = getInitParameter(“sql.user”),

sqlPassword = getInitParameter(“sql.password”);

try

{

Class.forName(sqlDriver);

Connection connection =

DriverManager.getConnection(sqlURL,

sqlUser,

sqlPassword);

try

{

String action = request.getParameter(“action”);

if(null != action)

{

if(action.equalsIgnoreCase(“create”))

doUpdates(request,connection,createStatements);

436 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.17: continued

14 2429 CH12 2.29.2000 2:25 PM Page 436

else if(action.equalsIgnoreCase(“drop”))

doUpdates(request,connection,dropStatements);

else if(action.equalsIgnoreCase(“delete”))

doDelete(request,connection);

else if(action.equalsIgnoreCase(“insert”))

doInsert(request,connection);

}

doPage(request,response,connection);

}

finally

{

connection.close();

}

}

catch(Exception e)

{

throw new ServletException(e);

}

}

/**

* drop and create statements to delete/create the database

*/

private static final String[] dropStatements =

{

“drop table products”,

“drop table orders”,

};

private static final String[] createStatements =

{

“create table products (id integer not null constraint idconstraint pri-
mary key,” +

“name varchar(50),manufacturer varchar(50),” +

“img varchar(30),warranty varchar(20),” +

“description varchar(150),price real)”,

“create table orders (name varchar(50),” +

“street varchar(100),region varchar(50),” +

“postal_code varchar(15),locality varchar(50),” +

437The Data Tier

continues

14 2429 CH12 2.29.2000 2:25 PM Page 437

“country varchar(25),email varchar(50),” +

“productid integer,productname varchar(50),” +

“productprice real,productquantity integer)”

};

/**

* execute a number of updates on the database

* (typically to create schema)

* @param request HTTP request

* @param connection database connection

* @param statements statements to execute

* @throw SQLException one statement throw an exception

*/

protected void doUpdates(HttpServletRequest request,

Connection connection,

String[] statements)

throws SQLException

{

Statement stmt = connection.createStatement();

SQLException e = null;

try

{

for(int i = 0;i < statements.length;i++)

try

{ stmt.executeUpdate(statements[i]); }

catch(SQLException x)

{ e = e != null ? e : x; }

if(null != e)

{

throw e;

}

}

finally

{

stmt.close();

}

}

438 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.17: continued

14 2429 CH12 2.29.2000 2:25 PM Page 438

/**

* delete one product from the database

* @param request HTTP request

* @param connection database connection

* @return the form to display (the result screen if you like)

*/

protected void doDelete(HttpServletRequest request,

Connection connection)

throws SQLException

{

PreparedStatement stmt =

connection.prepareStatement(

“delete from products where id = ?”);

try

{

String id = request.getParameter(“id”);

stmt.setInt(1,Integer.parseInt(id));

stmt.executeUpdate();

}

finally

{

stmt.close();

}

}

/**

* create a new product in the database

* @param request HTTP request

* @param connection database connection

* @return the form to display (the result screen if you like)

*/

protected void doInsert(HttpServletRequest request,

Connection connection)

throws SQLException, Exception

{

String id = request.getParameter(“id”),

name = request.getParameter(“name”),

439The Data Tier

continues

14 2429 CH12 2.29.2000 2:25 PM Page 439

manufacturer = request.getParameter(“manufacturer”),

image = request.getParameter(“image”),

warranty = request.getParameter(“warranty”),

description = request.getParameter(“description”),

price = request.getParameter(“price”);

PreparedStatement stmt =

connection.prepareStatement(

“insert into products (id,name,manufacturer,img,” +

“warranty,description,price) values(?,?,?,?,?,?,?)”);

try

{

stmt.setString(1,id);

stmt.setString(2,name);

stmt.setString(3,manufacturer);

stmt.setString(4,image);

stmt.setString(5,warranty);

stmt.setString(6,description);

stmt.setString(7,price);

stmt.executeUpdate();

}

finally

{

stmt.close();

}

}

/**

* check whether the schema has been created

* @return true if the schema is complete, false otherwise

*/

protected boolean isSchemaCreated(Connection connection)

throws SQLException

{

// ask the name of all the tables in the database

// check if one of them is “products”

DatabaseMetaData meta = connection.getMetaData();

ResultSet rs =

meta.getTables(null,null,null,new String[] { “TABLE” });

440 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.17: continued

14 2429 CH12 2.29.2000 2:25 PM Page 440

int found = 0;

while(rs.next())

{

String tableName = rs.getString(“TABLE_NAME”);

if(tableName.equalsIgnoreCase(“products”)

|| tableName.equalsIgnoreCase(“orders”))

found++;

}

rs.close();

return 2 == found;

}

/**

* display the page, etc.

* @param request HTTP request

* @param connection database connection

*/

protected void doPage(HttpServletRequest request,

HttpServletResponse response,

Connection connection)

throws SQLException, IOException

{

Writer writer = response.getWriter();

writer.write(“<HTML><HEAD><TITLE>XML Server Console” +

“</TITLE></HEAD><BODY>”);

Statement stmt = connection.createStatement();

try

{

if(isSchemaCreated(connection))

{

writer.write(“<P><FORM ACTION=\””);

writer.write(request.getServletPath());

writer.write(“\” METHOD=\”POST\”><TABLE>”);

writer.write(“<TR><TD>Identifier:</TD>”);

writer.write(“<TD><INPUT TYPE=\”TEXT\””);

writer.write(“ NAME=\”id\”></TD></TR>”);

441The Data Tier

continues

14 2429 CH12 2.29.2000 2:25 PM Page 441

writer.write(“<TR><TD>Name:</TD>”);

writer.write(“<TD><INPUT TYPE=\”TEXT\””);

writer.write(“ NAME=\”name\”></TD></TR>”);

writer.write(“<TR><TD>Manufacturer:</TD>”);

writer.write(“<TD><INPUT TYPE=\”TEXT\””);

writer.write(“ NAME=\”manufacturer\”></TD></TR>”);

writer.write(“<TR><TD>Image:</TD>”);

writer.write(“<TD><INPUT TYPE=\”TEXT\””);

writer.write(“ NAME=\”image\”></TD></TR>”);

writer.write(“<TR><TD>Warranty:</TD>”);

writer.write(“<TD><INPUT TYPE=\”TEXT\””);

writer.write(“ NAME=\”warranty\”></TD></TR>”);

writer.write(“<TR><TD>Description:</TD>”);

writer.write(“<TD><INPUT TYPE=\”TEXT\””);

writer.write(“ NAME=\”description\”></TD></TR>”);

writer.write(“<TR><TD>Price:</TD>”);

writer.write(“<TD><INPUT TYPE=\”TEXT\””);

writer.write(“ NAME=\”price\”></TD></TR>”);

writer.write(“</TABLE><INPUT TYPE=\”SUBMIT\””);

writer.write(“ VALUE=\”Create\”>”);

writer.write(“<INPUT TYPE=\”HIDDEN\””);

writer.write(“ NAME=\”action\” VALUE=\”insert\”>”);

writer.write(“</FORM><P>”);

ResultSet rs =

stmt.executeQuery(“select id, name from products”);

writer.write(“<TABLE>”);

while(rs.next())

{

writer.write(“<TR><TD>”);

writer.write(rs.getString(2));

writer.write(“</TD><TD><FORM ACTION=\””);

writer.write(request.getServletPath());

writer.write(“\” METHOD=\”POST\”>”);

writer.write(“ <INPUT TYPE=\”SUBMIT\””);

writer.write(“ VALUE=\”Delete\”>”);

writer.write(“<INPUT TYPE=\”HIDDEN\””);

writer.write(“ NAME=\”action\” VALUE=\”delete\”>”);

442 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.17: continued

14 2429 CH12 2.29.2000 2:25 PM Page 442

writer.write(“<INPUT TYPE=\”HIDDEN\””);

writer.write(“ NAME=\”id\” VALUE=\””);

writer.write(rs.getString(1));

writer.write(“\”>”);

writer.write(“</FORM></TD></TR>”);

}

writer.write(“</TABLE>”);

rs = stmt.executeQuery(“select name, “ +

“productname from orders”);

writer.write(“<TABLE>”);

while(rs.next())

{

writer.write(“<TR><TD>”);

writer.write(rs.getString(1));

writer.write(“</TD><TD>”);

writer.write(rs.getString(2));

writer.write(“</TD></TR>”);

}

writer.write(“</TABLE>”);

}

writer.write(“<P><FORM ACTION=\””);

writer.write(request.getServletPath());

writer.write(“\” METHOD=\”POST\”>”);

writer.write(“<INPUT TYPE=\”SUBMIT\””);

writer.write(“ VALUE=\”Drop tables\”>”);

writer.write(“<INPUT TYPE=\”HIDDEN\””);

writer.write(“ NAME=\”action\” VALUE=\”drop\”>”);

writer.write(“</FORM>”);

writer.write(“<FORM ACTION=\””);

writer.write(request.getServletPath());

writer.write(“\” METHOD=\”POST\”>”);

writer.write(“<INPUT TYPE=\”SUBMIT\””);

writer.write(“ VALUE=\”Create tables\”>”);

writer.write(“<INPUT TYPE=\”HIDDEN\””);

writer.write(“ NAME=\”action\” VALUE=\”create\”>”);

writer.write(“</FORM>”);

}

finally

443The Data Tier

continues

14 2429 CH12 2.29.2000 2:25 PM Page 443

{

stmt.close();

}

writer.write(“</BODY></HTML>”);

writer.flush();

}

}

Viewer and Editor
XMLi is a smaller merchant. It doesn’t have a Web site or a database.
XMLi creates its list of products manually with the editor shown in
Listings 12.18, 12.19, and 12.20. Listing 12.18 is the Java servlet, Listing
12.19 is the JavaScript file, and Listing 12.20 is the XSL style sheet.
You edit a list of products through a URL like http://localhost
/editor?merchant=xmli.
Listing 12.18: Editor.java

package com.psol.xcommerce;

import java.io.*;

import org.w3c.dom.*;

import javax.servlet.*;

import javax.servlet.http.*;

/**

* Editor is a web-tool to create product lists

* for smaller merchants.

*

* @version Sep 10, 1999

* @author Benoît Marchal <bmarchal@pineapplesoft.com>

*/

public class Editor

extends HttpServlet

{

/**

* the editor’s style sheet

*/

protected Document styleSheet;

444 Chapter 12: Putting It All Together: An e-Commerce Example

E X A M P L E

Listing 12.17: continued

14 2429 CH12 2.29.2000 2:25 PM Page 444

/**

* initializes the servlet, read the style sheet

* @exception could not read the style sheet

*/

public void init()

throws ServletException

{

String fname = getInitParameter(“editor.xsl”);

styleSheet = XMLUtil.parse(fname);

}

/**

* process GET requests

* @param request request received from the client

* @param response response to the client

*/

protected void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException

{

String merchant = request.getParameter(“merchant”),

fname = getInitParameter(merchant + “.xml”);

if(null == merchant || null == fname)

{

response.sendError(HttpServletResponse.SC_NOT_FOUND);

return;

}

Document document = XMLUtil.parse(fname);

XMLUtil.transform(document,

styleSheet,

response.getWriter(),

response.getCharacterEncoding());

}

/**

* handle POST method, HttpServlet forward POST request from service()

445Viewer and Editor

continues

14 2429 CH12 2.29.2000 2:25 PM Page 445

* to this method

* @param request the request received from the client

* @param response interface to the client

*/

protected void doPost(HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException

{

String merchant = request.getParameter(“merchant”),

fname = getInitParameter(merchant + “.xml”);

if(null == merchant || null == fname)

{

response.sendError(HttpServletResponse.SC_NOT_FOUND);

return;

}

String pwdRequest = request.getParameter(“pwd”),

pwdCheck = getInitParameter(merchant + “.pwd”),

xml = request.getParameter(“xmldata”);

if(null != pwdCheck && !pwdCheck.equals(pwdRequest))

{

response.sendError(HttpServletResponse.SC_FORBIDDEN);

return;

}

Writer writer = new FileWriter(fname);

writer.write(xml);

writer.close();

writer = response.getWriter();

writer.write(“<HTML><HEAD><TITLE>Confirmation”);

writer.write(“</TITLE></HEAD><BODY><P>”);

writer.write(“Your changes were saved as follow:<PRE>”);

XMLUtil.writeInXML(writer,xml);

writer.write(“<PRE></BODY></HTML>”);

writer.flush();

}

}

446 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.18: continued

14 2429 CH12 2.29.2000 2:25 PM Page 446

Listing 12.19: Editor.js

// editor.js, common code for Editor

var products = new Array();

function addProduct(form)

{

// collects data from the form

var id = form.id.value,

name = form.name.value,

price = form.price.value,

description = form.description.value;

doAddProduct(form,id,name,price,description);

}

function doAddProduct(form,id,name,price,description)

{

var productList = form.productlist,

product = new Product(id,name,price,description);

// arrays are zero-based so products.length points

// to one past the latest product

// JavaScript automatically allocates memory

var pos = products.length;

products[pos] = product;

var option = new Option(name + “ (“ + price + “)”,pos);

productList.options[productList.length] = option;

}

function deleteProduct(form)

{

var productList = form.productlist,

pos = productList.selectedIndex;

if(pos != -1)

447Viewer and Editor

continues

14 2429 CH12 2.29.2000 2:25 PM Page 447

{

var product = productList.options[pos].value;

productList.options[pos] = null;

products[product] = null;

}

}

function exportProduct(form)

{

var xmlCode = “”,

merchant = form.merchant.value,

attribute = “merchant=’” + merchant + “‘“;

var i;

for(i = 0;i < products.length;i++)

if(products[i] != null)

xmlCode += products[i].toXML();

xmlCode = element(“products”,attribute,xmlCode);

form.xmldata.value = “<?xml version=’1.0’?>” + xmlCode;

}

function resetAll(form,document)

{

priceList = null;

form.output.value = “”;

}

function element(name,attributes,content)

{

var result = “<” + name;

if(attributes != “”)

result += “ “ + attributes;

result += “>”;

result += content;

result += “</” + name + “>\r”;

448 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.19: continued

14 2429 CH12 2.29.2000 2:25 PM Page 448

return result;

}

function escapeXML(string)

{

var result = “”,

i,

c;

for(i = 0;i < string.length;i++)

{

c = string.charAt(i);

if(c == ‘<’)

result += “<”;

else if(c == ‘&’)

result += “&”;

else

result += c;

}

return result;

}

// declares product object

function Product(id,name,price,description)

{

this.id = id;

this.name = name;

this.price = price;

this.description = description;

this.toXML = product_toXML;

}

function product_toXML()

{

var attrs = “id=’” + this.id + “‘“,

result = element(“name”,””,escapeXML(this.name));

result += element(“price”,””,escapeXML(this.price));

449Viewer and Editor

continues

14 2429 CH12 2.29.2000 2:25 PM Page 449

result += element(“description”,””,

escapeXML(this.description));

return element(“product”,attrs,result);

}

Listing 12.20: editor.xsl

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”

xmlns=”http://www.w3.org/TR/REC-html40”>

<xsl:output method=”html”/>

<xsl:template match=”/”>

<HTML><HEAD><TITLE>Product List Editor</TITLE>

<SCRIPT LANGUAGE=”JavaScript” SRC=”editor.js”>

<xsl:text> </xsl:text></SCRIPT>

<SCRIPT LANGUAGE=”JavaScript”><xsl:comment>

function load(form)

{

<xsl:for-each select=”products/product”>

doAddProduct(form,

“<xsl:value-of select=”@id”/>”,

“<xsl:value-of select=”name”/>”,

“<xsl:value-of select=”price”/>”,

“<xsl:value-of select=”description”/>”);

</xsl:for-each>

}

// </xsl:comment>

</SCRIPT>

</HEAD>

<BODY ONLOAD=”load(document.controls)”>

<CENTER>

<FORM NAME=”controls” METHOD=”POST”

ACTION=”editor”>

ID: <INPUT TYPE=”TEXT” NAME=”id” SIZE=”3”/>

Name: <INPUT TYPE=”TEXT” NAME=”name”/>

Price: <INPUT TYPE=”TEXT” NAME=”price”

SIZE=”7”/>

450 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.19: continued

14 2429 CH12 2.29.2000 2:25 PM Page 450

Description:

<TEXTAREA NAME=”description” ROWS=”5”

COLS=”50”/>

<SELECT NAME=”productlist” SIZE=”5”

WIDTH=”250”/>

<INPUT TYPE=”BUTTON” VALUE=”Add”

ONCLICK=”addProduct(controls)”/>

<INPUT TYPE=”BUTTON” VALUE=”Delete”

ONCLICK=”deleteProduct(controls)”/>

Password: <INPUT TYPE=”PASSWORD” NAME=”pwd”/>

<INPUT TYPE=”SUBMIT” VALUE=”Save”

ONCLICK=”exportProduct(controls)”/>

<INPUT TYPE=”HIDDEN” NAME=”xmldata”/>

<INPUT TYPE=”HIDDEN” NAME=”merchant”>

<xsl:attribute name=”VALUE”>

<xsl:value-of select=”products/@merchant”/>

</xsl:attribute>

</INPUT>

</FORM>

</CENTER>

</BODY>

</HTML>

</xsl:template>

</xsl:stylesheet>

Note that this editor cannot start from an empty file because it needs the
merchant name in the style sheet. When creating a new merchant, you
must also create the following file (an empty list of products):
<?xml version=’1.0’?><products merchant=’xmli’/>

Listing 12.21 and the accompanying style sheet in Listing 12.22 display the
orders for XMLi.
Listing 12.21: Viewer.java

package com.psol.xcommerce;

import java.io.*;

import org.w3c.dom.*;

451Viewer and Editor

continues

14 2429 CH12 2.29.2000 2:25 PM Page 451

import javax.servlet.*;

import javax.servlet.http.*;

/**

* Viewer is a web-tool to view orders

* for smaller merchants.

*

* @version Sep 10, 19999

* @author Benoît Marchal <bmarchal@pineapplesoft.com>

*/

public class Viewer

extends HttpServlet

{

/**

* the viewer’s style sheet

*/

protected Document styleSheet;

/**

* initializes the servlet, read the style sheet

* @exception could not read the style sheet

*/

public void init()

throws ServletException

{

String fname = getInitParameter(“viewer.xsl”);

styleSheet = XMLUtil.parse(fname);

}

/**

* process GET requests

* @param request request received from the client

* @param response response to the client

*/

protected void doGet(HttpServletRequest request,

HttpServletResponse response)

452 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.21: continued

14 2429 CH12 2.29.2000 2:25 PM Page 452

throws IOException, ServletException

{

String merchant = request.getParameter(“merchant”),

path = getInitParameter(merchant + “.orders”),

fname = request.getParameter(“fname”);

if(null == merchant || null == path)

{

response.sendError(HttpServletResponse.SC_NOT_FOUND);

return;

}

if(null == fname)

{

File file = new File(path);

String[] files = file.list();

Writer writer = response.getWriter();

writer.write(“<HTML><HEAD><TITLE>Order list</TITLE>”);

writer.write(“</HEAD><BODY>”);

for(int i = 0;i < files.length;i++)

{

writer.write(“<A HREF=\””);

writer.write(request.getServletPath());

writer.write(“?merchant=”);

writer.write(merchant);

writer.write(“&fname=”);

writer.write(files[i]);

writer.write(“\”>”);

writer.write(files[i]);

writer.write(“”);

}

writer.write(“</BODY></HTML>”);

writer.flush();

}

else

{

File file = new File(path,fname);

Document document = XMLUtil.parse(file.getPath());

XMLUtil.transform(document,

453Viewer and Editor

continues

14 2429 CH12 2.29.2000 2:25 PM Page 453

styleSheet,

response.getWriter(),

response.getCharacterEncoding());

}

}

}

Listing 12.22: viewing.xsl

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<xsl:stylesheet xmlns:xsl=”http://www.w3.org/1999/XSL/Transform/”

xmlns=”http://www.w3.org/TR/REC-html40”>

<xsl:output method=”html”/>

<xsl:template match=”/”>

<HTML>

<HEAD>

<TITLE>Order</TITLE>

</HEAD>

<BODY>

<P>You have received the following order from:</P>

<TABLE BORDER=”0”>

<TR><TD>Name:</TD>

<TD><xsl:value-of

select=”order/buyer/@name”/></TD></TR>

<TR><TD>Street:</TD>

<TD><xsl:value-of

select=”order/buyer/@street”/></TD></TR>

<TR><TD>Region:</TD>

<TD><xsl:value-of

select=”order/buyer/@region”/></TD></TR>

<TR><TD>ZIP or postal code:</TD>

<TD><xsl:value-of

select=”order/buyer/@postal-code”/></TD></TR>

<TR><TD>Locality:</TD>

<TD><xsl:value-of

select=”order/buyer/@locality”/></TD></TR>

<TR><TD>Country:</TD>

454 Chapter 12: Putting It All Together: An e-Commerce Example

Listing 12.21: continued

14 2429 CH12 2.29.2000 2:25 PM Page 454

<TD><xsl:value-of

select=”order/buyer/@country”/></TD></TR>

<TR><TD>E-mail:</TD>

<TD><xsl:value-of

select=”order/buyer/@email”/></TD></TR>

</TABLE>

<P>The order is for the following item:</P>

<TABLE BORDER=”0”>

<TR><TD>ID</TD><TD>Name</TD>

<TD ALIGN=”RIGHT”>Price</TD>

<TD ALIGN=”RIGHT”>Quantity</TD></TR>

<xsl:for-each select=”order/product”>

<TR>

<TD><xsl:value-of select=”@id”/></TD>

<TD><xsl:value-of select=”@name”/></TD>

<TD ALIGN=”RIGHT”><xsl:value-of

select=”@price”/></TD>

<TD ALIGN=”RIGHT”><xsl:value-of

select=”@quantity”/></TD>

</TR>

</xsl:for-each>

</TABLE>

</BODY>

</HTML>

</xsl:template>

</xsl:stylesheet>

The scalability of XML should not be underestimated. The same document
works for Emailaholic (which needs integration) as for XMLi (which prefers
to view the orders online).

What’s Next
What’s next? Your turn. See where XML makes sense in your environment
and start your first application today. XML is versatile and flexible, so it’s
ideal when starting small. You can gain experience and grow as you become
more confident.

I hope you enjoyed reading this book as much as I enjoyed writing it.

455What's Next

14 2429 CH12 2.29.2000 2:25 PM Page 455

15 2429 AppA 11/12/99 1:07 PM Page 456

Appendix A

Crash Course on Java
If you are a JavaScript, Perl, or C++ programmer and you are not familiar
with Java, this appendix is for you. Java is a natural companion to XML.
This appendix teaches you just enough Java to be able use it with XML.

In this appendix, you learn

• how Java compares to JavaScript and other programming languages

• why Java is important for XML

• how to install a Java runtime environment and run Java applications

• enough Java to read and write simple programs

You don’t have to become a super-trooper in Java programming, but some
familiarity with “the other Web language” is required for serious fun with
XML. If anything, there are more XML tools available in Java than in any
other language.

✔ If you want to quickly learn how to run the Java package introduced in Chapter 3, turn to

the section “Downloading Java Tools,” on page 459, and the section “Understanding the

Classpath,”on page 480.

Java in Perspective
There is lot of discussion about the relative importance of Java and XML.
In my experience, they are complementary. Admittedly, I am somewhat
biased in favor of Java. I formed my company, Pineapplesoft, with a focus
on Java development. At the time, I bet on the importance of cross-platform
applications.

I believed (and still do) that a low level object-oriented programming lan-
guage for the Internet is required. C++ is low-level but is not portable
enough (you can’t run the same program unmodified on different
machines).

XML is not a programming language, just as HTML is not a programming

15 2429 AppA 11/12/99 1:07 PM Page 457

language. XML is a language to encode information. That is useful but you
also need programming to manipulate the information in XML documents.

One of the major misconceptions is that Java equals applets. Applets might
have been popular in the early days of Java but they never had a fighting
chance against Macromedia Flash or Dynamic HTML. For simple anima-
tion, JavaScript is simpler than Java. For complex animation, Flash is
more efficient.

The value of Java lies elsewhere. In combination with XML, Java is partic-
ularly relevant for

• heavy-duty server-side applications

• components for scripting languages

Server-Side Applications
As you will see, Java combines a high-performance server environment
with portability.

Portability is essential on the server side because there is more diversity in
that space than on the desktop. Windows clearly rules the desktop but
there is no clear winner among servers: UNIX, Windows NT, and AS/400
are all major platforms.

Furthermore, a typical organization might have all of these platforms run-
ning at once, and your application might have to run on both UNIX and
Windows servers.

Finally, for servers, portability equates with scalability: When new hard-
ware is introduced to boost the performance, existing software must still
run on it. As an added bonus, software can be developed on cheap machines
and deployed on high-end servers.

Components of the Server-Side Applications
Increasingly, we rely on scripting languages—such as JavaScript, Perl,
Python, or ColdFusion—to combine components such as an XSL Processor
or database access.

Scripting languages are high-level programming languages. They are usu-
ally interpreted and typeless. This makes them able to create applications
quickly. These languages are at their best when they are gluing components
together.

XML fits well with this style of programming. The numerous companion
standards (DOM, SAX, XSL, CSS, X-Schema, RDF, and so on) are being
made available as components.

Scripting languages are not the best tool for writing components. For one

458 Appendix A

15 2429 AppA 11/12/99 1:07 PM Page 458

thing, it is difficult to integrate scripting languages with one another.
Furthermore, because scripting languages are high level, they are less effi-
cient.

Java is well adapted to write these components because it is a compiled,
low-level programming language. Additionally, most scripting languages
can interface with Java components. Java portability means that the com-
ponents are available on a large number of platforms. In Java, components
are called JavaBeans.

As has already been noted, there are more XML components (parsers, XSL
processors, conversion, and so on) written in Java than in any other lan-
guage.

Downloading Java Tools
This section lists the various pieces you need to run the examples in this
book. I have chosen software that is available free of charge when possible.

If you find yourself doing lots of Java development, however, you will
want to buy an integrated development environment such as Café
(www.symantec.com), Visual Age (www.software.ibm.com), or JBuilder
(www.inprise.com).

Java Environment
The trick behind Java portability is the Java Virtual Machine or JVM. Java
programs are compiled to a portable binary format, called the class files. To
execute the binaries, you need a JVM.

The JVM is available on most platforms. You can download a JVM for your
platform from java.sun.com. It comes in one of two versions:

• Java Runtime Environment (JRE) is a naked JVM. It can run existing
Java applications but lacks the tools to develop new ones.

• Java Development Kit (JDK) offers everything in the JRE as well as
development tools such as the compiler.

If you plan to run the examples in this book, you need a JDK to compile
them. If you are interested in running only existing packages (such as
LotusXSL), a JRE is enough.

At the time of this writing, there are three major generations of JVMs:

• JDK 1.0 is the original version. Seldom used anymore, it was slow and
limited.

459Appendix A

15 2429 AppA 11/12/99 1:07 PM Page 459

• JDK 1.1 is the most common version. It is a mature product that
greatly improved the usability of JDK 1.0.x.

• Java 2 (also known as JDK 1.2) is the newest version. It is not avail-
able on every platform yet. It adds many bells and whistles to Java—
not all of them useful. The graphical component is not as stable as its
JDK 1.1 equivalent. However, you don’t need the graphical component
in this book.

Which version you choose depends on the components you want to use.
Most components require at least JDK 1.1. If available on your platform, I
advise you to download Java 2. The examples in this book have been devel-
oped on Java 2, but they should run unmodified on JDK 1.1.

XML Components
The examples in this book have been tested with IBM’s XML for Java (ver-
sion 2.0.9) and LotusXSL (version 0.17). XML for Java is a parser that sup-
ports both the SAX and DOM interfaces. LotusXSL is an implementation of
XSLT.

At the time of this writing, both are available free of charge from
www.alphaworks.ibm.com. If this changes, I will post an update at
www.mcp.com.

There are several other parsers and XSL processors for Java:

• Sun’s ProjectX is another parser that supports DOM and SAX. It is
available from java.sun.com.

• Microsoft has a DOM parser available from msdn.microsoft.com. The
Microsoft parser is also available as a COM component.

• The DataChannel parser, XJParse (available from
www.datachannel.com), integrates XSL support.

• Microstar’s Ælfred (available from www.microstar.com) is a SAX-only
parser that boasts a very small memory footprint.

• James Clark has written a SAX-compliant parser (XP) and an XSL
processor (XT). Both are available from www.jclark.com.

Servlet Engine
Servlets are Java’s version of CGI scripts. Servlets include a standard API
in order to interface Java with Web servers. The e-commerce example in
Chapter 12, “Putting It All Together: An e-Commerce Example,” is based on
servlets. You need a servlet-enabled Web server.

460 Appendix A

15 2429 AppA 11/12/99 1:07 PM Page 460

If your Web server is Apache, Netscape, IIS, or WebSTAR, you can add
servlet support through one of the following three products:

• JRun is available from www.jrun.com. It supports the major Web
servers and then some.

• ServletExec is available from www.newatlanta.com. It supports the
major Web servers.

• Locomotive is available from www.locomotive.org. It supports fewer
servers than the other two but it is an open-source project.

Alternatively, you can turn to a Web server that natively support servlets.
These include

• WebSTAR, which is available from www.ora.com.

• Java Web Server, which is available from jserv.javasoft.com. As the
name implies, it is written in Java.

• Jetty, which is available from www.mortbay.com, is also written in Java
but it is an open-source product.

I strongly recommend Jetty. It is a full-featured Web server (it even sup-
ports proxy) with a small memory footprint. It is also fast to download. The
only limitation is that the user interface is old-fashioned: You must edit
text files. Finally, I use Jetty throughout the book which is another good
reason to give it a try.

If you want ease of use, WebSTAR is a good choice. In addition to servlets,
it also supports ASP and iHTML.

N O T E
Open-source software means that the source code for the software is freely available.
Users are encouraged to download the source code and modify it as appropriate (for
example, to fix bugs or add new features).

You are encouraged to contribute your modifications to the community. This approach
leads to the development of software by volunteers.

The most famous open-source software are Linux and GNU (two UNIX variants), Apache
(a Web server), and Mozilla (Netscape Web browser).

Your First Java Application
Enough talk, let’s code. This section shows you how to write, compile, and
run your first Java application.

461Appendix A

15 2429 AppA 11/12/99 1:07 PM Page 461

Listing A.1 is a Java application that converts a text file to your platform
end-of-line convention.
Listing A.1: Java Application

package com.psol.lel;

import java.io.*;

/**

* Rewrite a text file with system-specific end of lines.

* Useful for text files downloaded from the Net.

*

* @author Benoît Marchal

* @version 28 August 1999

*/

public class LeL

{

/**

* Entry-point for the program.

* Expect two filenames on the command-line: input and output.

*

* @param args command-line parameters

*/

public static void main(String[] args)

{

if(args.length < 2)

System.err.println(“Usage is: java com.psol.lel.LeL
➥ input output”);

// we don’t want to overwrite a file by mistake

else if(new File(args[1]).exists())

System.err.println(“Error: output file already exists!”);

else

try

{

BufferedReader reader =

new BufferedReader(new FileReader(args[0]));

PrintWriter writer =

new PrintWriter(new FileWriter(args[1]));

462 Appendix A

E X A M P L E

15 2429 AppA 11/12/99 1:07 PM Page 462

// the try/finally guarantees the writer is closed

try

{

for(String line = reader.readLine();

null != line;

line = reader.readLine())

writer.println(line);

}

finally

{

writer.close();

}

}

catch(IOException e)

{

System.err.println(“Error: “ + e.getMessage());

}

}

}

UNIX uses an LF character to signal end of lines, the Mac uses the CR
character, and Windows uses a combination of CR/LF. Needless to say, text
files (such as XML documents) saved on one platform are not easy to
manipulate on another platform. This application rewrites the file to your
platform convention.

You must save this program in a file called LeL.java. Java is picky about
filenames. To compile, issue this command:
javac -d . LeL.java

C A U T I O N
This assumes the Java compiler is in your path. If not, you will have to prefix the javac
command with the path to the compiler, as in

c:\java\javac -d . LeL.java

You can run it with
java com.psol.lel.LeL unixfile.txt windowsfile.txt

Figures A.1 and A.2 illustrate how the LeL program reorganizes the file.
Notice that in Figure A.1 the lines are all wrong.

463Appendix A

O U T P U T

15 2429 AppA 11/12/99 1:07 PM Page 463

Figure A.1: A UNIX file under Windows

464 Appendix A

Figure A.2: The same file after LeL rewrote it

Flow of Control
Java has all the usual statements for tests and loops: if/else, switch/case,
for, while, and do/while. Multiple statements are grouped with the { and }
characters. Java also supports exceptions to report error conditions (see the
section entitled “Exceptions”).

1. The following example loops through the lines in the input file and
prints them in the output file:

for(String line = reader.readLine();

null != line;

line = reader.readLine())

writer.println(line);

E X A M P L E

15 2429 AppA 11/12/99 1:07 PM Page 464

2. The following example tests the value of args.length to print an error
message:

if(args.length < 2)

System.err.println(“Usage is: java com.psol.lel.LeL
➥ input output”);

Variables
Of course, Java has variables. Variables in Java must be declared before
being used. Furthermore, Java is a typed language so every variable must
have a type.

1. The following example declares one variable, line. The declaration
must include the type. The type precedes the name of the variable in
the declaration. Variables can be initialized with the = operator.

String line = reader.readLine();

Java supports the following primitive types:

• boolean: true or false

• char: Unicode character

• byte: 8-bit signed integer

• short: 16-bit signed integer

• int: 32-bit signed integer

• long: 64-bit signed integer

• float: 32-bit floating-point

• double: 64-bit floating-point

Object variables are implemented as references to objects. In the example,
String declares a variable line as a reference to a String object.

2. To declare arrays, append the [] characters to the type, as in
int[] arrayOfInteger = new int[6];

Class
Because Java is an object-oriented language, it supports the notions of
classes and objects. An object is an instance of a class. A class is a type for
a category of objects. In Java, with the exception of the primitive types,
everything is an object.

The following example declares a class LeL:
public class LeL

{

465Appendix A

E X A M P L E

E X A M P L E

E X A M P L E

E X A M P L E

15 2429 AppA 11/12/99 1:07 PM Page 465

// ...

}

Creating Objects
Every object in Java is allocated on the heap. To create objects in Java, you
use the new operator.

1. The following example creates a BufferedReader object:
BufferedReader reader =

new BufferedReader(new FileReader(args[0]));

2. Objects are typically assigned to variables, but they need not be. It is
also very common to create anonymous objects that are used and dis-
carded in one sequence. The following example creates a File object,
calls its exists() method, and then discards it. The object is immedi-
ately discarded because it is never assigned to a variable:

if(new File(args[1]).exists())

System.err.println(“Error: output file already exists!”);

You don’t have to explicitly destroy objects in Java. When an object is no
longer in use, it is automatically reclaimed by the garbage collector.

Accessing Fields and Methods
A class contains fields or data variables that are attached to objects. It also
contains methods with the executable code of the class.

To access a field or a method of an object, you separate its name from the
object reference with a dot, as in
writer.close();

Static
By default, the variables or methods declared in a class are attached to
objects of that class. However, it is possible to declare variables or methods
attached to the class.

1. The following example declares a class with two fields: x and y. Every
Point object has the two fields:

class Point

{

public int x, y;

}

466 Appendix A

E X A M P L E

E X A M P L E

E X A M P L E

E X A M P L E

15 2429 AppA 11/12/99 1:07 PM Page 466

2. However, it is possible to attach methods or fields to the class itself.
These are declared with the static modifier. This is useful, for exam-
ple, for keeping track of how many Point objects have been created:

class Point

{

public int x, y;

public static int numberOfPoints = 0;

}

Method and Parameters
In Java, the code is contained in methods. Note that there are no stand-
alone methods. Every method must be attached to a class.

The following example declares the main() method. A method accepts para-
meters that are declared, like variables, in parentheses.
public static void main(String[] args)

{

// ...

}

Methods may return a value. The type of the return value is declared
before the method name. If the method returns no value, its type is void.

main() is a special method that serves as the entry point for the applica-
tion.

Constructors
A class can have special methods, known as constructors. The constructors
are called when the object is created with the new operator. Constructors
are used to initialize the fields in a class. Constructors are declared like
methods but without a return value.

The Point class now has a constructor to initializes its fields:
public class Point

{

public int x, y;

public Point(int x1,int y1)

{

x = x1;

y = y1;

}

}

467Appendix A

E X A M P L E

E X A M P L E

E X A M P L E

15 2429 AppA 11/12/99 1:07 PM Page 467

Package
Java programs are organized in packages. Java packages play a role simi-
lar to XML namespaces: They prevent naming conflicts.

Packages are declared with the package statement, as in the following
example:
package com.psol.lel;

A package is also a logical unit that groups related classes. Therefore, you
can place all the classes of one application in a single package. In this case,
the lel package stands for “local end of line.” Large applications may be
split over several packages.

To avoid conflicts in the name of packages, their names should always start
with your domain name in reverse order.

Imports
The name of a class is its package name followed by the class name. In
other words, the name of the class LeL that’s in the package com.psol.lel is
com.psol.lel.LeL.

To save some typing, you can import classes or packages with the import
statement. The following line imports classes from the java.io package.
Thanks to the import, the class java.io.IOException is available as simply
IOException.
import java.io.*;

Packages whose names start with java are part of the core API. The core
API is the standard Java library.

Access Control
Classes, methods, and fields have access control, which limits how classes
can access other classes or methods on other classes.

Classes can be either package or public. Fields and methods can be
package, public, protected, or private. These different options are declared
with modifiers. The following class is public but its fields are protected:
public class Length

{

protected int length;

protected String unit;

}

These options are defined as follows:

468 Appendix A

E X A M P L E

E X A M P L E

E X A M P L E

15 2429 AppA 11/12/99 1:07 PM Page 468

• public is accessible from anywhere. Public access is declared with the
public modifier.

• package is accessible from the current package only. Package access is
declared with no modifier. It is the default.

• protected is accessible to the class descendant only. Protected access
is declared with the protected modifier.

• private is accessible to the class only. Private access is declared with
the private modifier.

Comments and Javadoc
Java has a special form of comments that you can use to automatically gen-
erate documentation for your application.

1. Like C++ or JavaScript, comments are enclosed in /* and */.
/**

* Rewrite a text file with system-specific end of lines.

* Useful for text files downloaded from the Net.

*

* @author Benoît Marchal

* @version 28 August 1999

*/

This comment is known as a javadoc comment. Javadoc comments are
enclosed in /** and */. They should be used for the class documentation.
The javadoc program can extract these comments from the source code and
automatically generate an HTML file with the class documentation.

As you can see, I can include HTML tags (like
) in the javadoc com-
ments. They eventually end up in the documentation.

The main advantage to placing the class documentation in the source code
is that it minimizes the chances that the documentation is out-of-date.

To generate the documentation, issue the following command. This creates
several HTML files with the documentation. The documentation is very
complete and includes index, table of contents, and more.

Figure A.3 shows the documentation page that is being generated.

469Appendix A

E X A M P L E

O U T P U T

15 2429 AppA 11/12/99 1:07 PM Page 469

Figure A.3: Javadoc documentation

Javadoc recognizes paragraphs starting with the @ character as special
paragraphs. The most common ones are

• @version States the application version

• @author States the name of the author (you can have multiple
@author paragraphs)

• @param Documents a method parameter (you can have multiple
@param paragraphs)

• @return Documents the value returned by a method

• @exception Documents the exception that a method can throw

2. There is an alternative form for short comments, also derived from
C++. Anything after the // characters until the end of the line is a
comment, as in

// we don’t want to overwrite a file by mistake

Exception
Like other object-oriented programming languages, Java uses exceptions to
signal errors. An exception is an object that describes the error.

470 Appendix A

E X A M P L E

15 2429 AppA 11/12/99 1:07 PM Page 470

1. To throw an exception, use the keyword throw:
throw new ServletException(“Error: invalid parameter”);

2. To report on exceptions, you must catch them with a try/catch state-
ment. If an exception is thrown in the try statement, control goes to
the catch statement, as in

try

{

// ...

// can throw an IOException

}

catch(IOException e)

{

System.err.println(“Error: “ + e.getMessage());

}

3. An optional finally statement can be attached to a try. The finally
statement is always executed, whether an exception is thrown or not.
A finally statement is ideal for cleanup code that must be executed,
as in

try

{

// ...

// can throw an exception

}

finally

{

writer.close();

}

4. Exceptions that are not caught in a method must be declared in the
throws statement of the method. The compiler won’t allow a method to
throw exceptions if the exceptions are not declared, as in

protected void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException

{

// ...

// can throw an IOException

}

471Appendix A

E X A M P L E

E X A M P L E

E X A M P L E

E X A M P L E

15 2429 AppA 11/12/99 1:07 PM Page 471

Servlets
The first Web servers were simply file servers. As illustrated in Figure A.4,
a browser would request a file from the server and the server would return
it. The browser would render the file onscreen. If the file included hyper-
links, the user could point and click to request more files.

472 Appendix A

Figure A.4: Serving files

Most Web sites are still being developed according to this model, which has
the advantage of simplicity.

The major limitation to this model, however, is that these Web sites are sta-
tic. For the user, interaction is limited to following hyperlinks. A user can-
not query a Web site and receive an answer based on that query.

Also, the information must be made available in HTML files. This is not
appropriate for information that changes rapidly. For example, stock quotes
change several times a day and it is not practical to continuously update
the files.

Instead, it makes more sense to dynamically create an HTML page in
response to user requests. The data in the page can come from a querying
database or from an XML document.

As illustrated in Figure A.5, an application is required to generate the page
based on the user’s request.

Figure A.5: Serving applications

15 2429 AppA 11/12/99 1:07 PM Page 472

The Web server is now an application server because it serves both files
and applications. The standard API for a Web server is the Common
Gateway Interface or CGI. Applications that need to interface with the
server must follow CGI.

CGI is a very simple API. It specifies how the Web server invokes the appli-
cation, how it passes the parameters it received from the user, and how the
application must return the page.

CGI is a very popular interface that is supported by all the major Web
servers. However, CGI has proven to be relatively inefficient. In particular,
with CGI, the Web server must invoke a new instance of the application for
each request. This alone invokes a huge overhead. Web sites that relied
heavily on CGI were slow.

In response, server vendors developed more efficient APIs (NSAPI and WAI
for Netscape, ISAPI for Microsoft). These alternative APIs are very similar
in scope to CGI but are more efficient. Unfortunately, unlike CGI, which is
common to most servers, the alternative APIs are vendor specific. An appli-
cation developed for Netscape’s Web servers won’t work with a Microsoft
server.

The Java community proposed servlets as a standard replacement for CGI.
Servlets are efficient because they are loaded once when the server starts.
The Web server can reuse the servlet for multiple requests. Furthermore,
servlets are portable and they work with all the major Web servers.

The e-commerce example in Chapter 12 uses servlets extensively. The next
section explains how to write servlets.

Your First Servlet
It’s time to put this in practice with a simple servlet example.

Listing A.2 is the XDic servlet. This servlet returns the definition of terms
entered in a form on a Web browser.
Listing A.2: The Servlet

package com.psol.xdic;

import java.io.*;

import java.net.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

/**

473Appendix A

E X A M P L E

continues

15 2429 AppA 11/12/99 1:07 PM Page 473

* XDic is a simple servlet that “plays the dictionary”.

*

* @version Aug 28, 1999

* @author Benoît Marchal <bmarchal@pineapplesoft.com>

*/

public class XDic

extends HttpServlet

{

/**

* handle GET method, HttpServlet forward GET request from service()

* to this method

* @param request the request received from the client

* @param response interface to the client

*/

protected void doGet(HttpServletRequest request,

HttpServletResponse response)

throws IOException

{

response.setContentType(“text/html”);

Writer w = response.getWriter();

w.write(“<HTML>”);

w.write(“<HEAD><TITLE>XDic</TITLE></HEAD>\n”);

w.write(“<BODY>\n”);

String word = request.getParameter(“word”);

if(null != word)

{

w.write(“<P>”); w.write(word); w.write(“: “);

String lowCaseWord = word.toLowerCase();

String definition = getInitParameter(lowCaseWord);

if(null == definition)

w.write(“unknown, sorry”);

else

w.write(definition);

w.write(“\n<HR>\n”);

}

w.write(“<FORM ACTION=\””);

474 Appendix A

Listing A.2: continued

15 2429 AppA 11/12/99 1:07 PM Page 474

w.write(request.getRequestURI());

w.write(“\”>\n”);

w.write(“<INPUT NAME=\”word\”>\n”);

w.write(“<INPUT TYPE=\”SUBMIT\”>\n”);

w.write(“</BODY>\n”);

w.write(“</HTML>”);

w.flush();

}

}

You need to compile the servlet with the following command:
javac -classpath c:\jetty\lib\javax.servlet.jar -d . XDic.java

Depending on which servlet engine you use and where it is installed on
your system, you need to adapt the classpath parameter so it uses the
correct path. See the section entitled “Understanding the Classpath” that
follows.

C A U T I O N
If there is an error message similar to “Package javax.servlet not found in
import.”, it means that the classpath is incorrect (be sure it points to the right
file).

To run the example with Jetty, you need the two configuration files in
Listings A.3 and A.4. Other servlet engines will need similar configuration.
Check the user manual of your servlet engine for more specific information.
Listing A.3: jetty.prp, the Server Configuration File

configuration for the XDic servlet

xdic./.InetAddrPort : 0.0.0.0:80

xdic./.Log./ : err

xdic./.Servlet./xdic$: xdic=com.psol.xdic.XDic?./XDic.prp

The properties are as follows:

• xdic./.InetAddrPort is the address the Web server should listen to.
0.0.0.0 means accept all connection. 80 is the port; you will have to
select another port if you already have a Web server on your machine.

• xdic./.Log./ select how to print error messages. It takes either a file-
name or err, which stands for the console.

475Appendix A

15 2429 AppA 11/12/99 1:07 PM Page 475

• xdic./.Servlet./xdic$ installs the xdic servlet. It takes the servlet’s
class name as a parameter. The class name may be followed by a ques-
tion mark and a filename for the servlet’s properties.

Listing A.4: XDic.prp, the Servlet Configuration File

xml=eXtensible Markup Language

xsl=XML Stylesheet Language

xslt=XSL Transformation

xslfo=XSL Formatting Objects

dtd=Document Type Definition

dcd=Document Content Description

xql=XML Query Language

sax=Simple API for XML

sox=Schema for Object-Oriented XML

ddml=Document Definition Markup Language

dom=Document Object Model

rdf=Resource Description Framework

css=Cascading Style Sheet

If using Jetty, save Listings A.3 and A.4 in the directory where you com-
piled the servlet. Be sure you use the correct filenames (jetty.prp and
XDic.prp).

Go to the command line and change to the servlet’s directory. The following
commands launch the server. You might have to adapt the classpath to
point to your copy of Jetty:
set classpath=c:\jetty\lib\javax.servlet.jar;

➥c:\jetty\lib\com.mortbay.Jetty.jar;.

java com.mortbay.Jetty.Server jetty.prp

The last argument on this command is the filename for Listing A.3. Jetty
comes with a default jetty.prp file but you must use the one in Listing A.3.

Figure A.6 shows the result in a Web browser. The servlet generates a page
that contains the definition of the term and a form to issue another query.

Inheritance
The servlet introduces one new Java construct: inheritance. Like any object-
oriented language, Java allows classes to inherit characteristics from other
classes. A class that inherits from another class is said to be a descendant.
The class it inherits from is its ancestor.

476 Appendix A

O U T P U T

15 2429 AppA 11/12/99 1:07 PM Page 476

Figure A.6: The servlet in a Web browser

The descendant has all the methods and fields defined in its ancestor, plus
any new fields or method it decides to implement.

Inheritance is indicated with the extends keyword followed by the ancestor
name. In Java, a class cannot inherit from more than one class (single
inheritance). In the following example, XDic inherits from HttpServlet:
public class XDic

extends HttpServlet

{

// ...

}

doGet()
Java servlets must inherit from HttpServlet and overwrite one or more
methods among doGet(), doPost(), and doPut(). Each of these methods cor-
responds to an HTTP command. In Listing A.2, the servlet overwrites
doGet() to handle GET requests.

When the user fills in a form and presses the submit button, the browser
prepares a request with the form data. It calls the Web server and passes it
the request.

The Web server recognizes this is a servlet request so it invokes the servlet
to prepare a response. The servlet analyses the request, computes a result,
and formats it as an HTML page. It returns the HTML page to the Web
server, which forwards it to the browser. You can follow the different steps
on Figure A.5.

477Appendix A

E X A M P L E

15 2429 AppA 11/12/99 1:07 PM Page 477

If you are not familiar with this style of programming, it is important to
remember that the servlet is invoked to answer a request from the browser.
The servlet must collect all the information from the browser and prepare
an HTML page with the result.

1. The servlet can access parameters sent by the browser through the
HttpRequest object. For example, the method getParameter() returns
the value of a form field:

String word = request.getParameter(“word”);

2. To generate an answer, the servlet uses the HttpResponse object. In the
following example, the servlet sets the MIME type of the result to
text/html (meaning HTML) and it starts printing the page on a
Writer:

response.setContentType(“text/html”);

Writer w = response.getWriter();

w.write(“<HTML>”);

w.write(“<HEAD><TITLE>XDic</TITLE></HEAD>\n”);

w.write(“<BODY>\n”);

3. Finally, the servlet can access configuration information through the
getInitParameter(). In the following example, the servlet looks up the
definition of a word from the configuration file:

String definition = getInitParameter(lowCaseWord);

The configuration file is in Listing A.4.

More Java Language Concepts
You now have enough background on Java to be able to read and follow the
various examples introduced in the book. There are, however, three impor-
tant aspects of the Java language that have not been covered—this section
will introduce them.

This and Super
Java also declares two keywords: this and super. They are used like ordi-
nary variables but this refers to the current object whereas super refers to
the ancestor of the current object.

In the following example, the object invokes a method on its ancestor:
super.init(config);

478 Appendix A

E X A M P L E

E X A M P L E

E X A M P L E

E X A M P L E

15 2429 AppA 11/12/99 1:07 PM Page 478

Interfaces and Multiple Inheritance
You have seen that Java supports only single inheritance: A class cannot
have more than one ancestor. Multiple inheritance in Java is based on
interfaces.

An interface is the skeleton of a class; it declares the methods that a class
must support but it does not provide the implementation. Implementation
of the methods must be provided in a class.

1. Many Java APIs are defined in terms of interfaces. Listing A.5 is one
of the interfaces defined by SAX.

Listing A.5: A SAX Interface

package org.xml.sax;

/**

* Receive notification of general document events.

* Most comments removed to simplify the listing.

*

* @author David Megginson (ak117@freenet.carleton.ca)

* @version 1.0

*/

public interface DocumentHandler {

public abstract void setDocumentLocator (Locator locator);

public abstract void startDocument ()

throws SAXException;

public abstract void endDocument ()

throws SAXException;

public abstract void startElement (String name,

AttributeList atts)

throws SAXException;

public abstract void endElement (String name)

throws SAXException;

public abstract void characters (char ch[],

int start,

int length)

throws SAXException;

public abstract void ignorableWhitespace (char ch[],

int start,

int length)

479Appendix A

E X A M P L E

continues

15 2429 AppA 11/12/99 1:07 PM Page 479

throws SAXException;

public abstract void processingInstruction (String target,

String data)

throws SAXException;

}

2. A class can implement more than one interface, which is how multiple
inheritance is supported in Java. In the following example, SAXServlet
inherits from HttpServlet and implements two interfaces:
DocumentHandler and EntityResolver.

public class SAXServlet

extends HttpServlet

implements DocumentHandler, EntityResolver

{

// ...

}

Understanding the Classpath
One of the most confusing aspects of Java is probably the classpath. Most of
the problems when running Java applications are related to the classpath.

The JVM loads Java classes as needed. If your application uses the
HttpServlet class, the JVM will load it. However, the JVM needs to know
where the class is located. To find classes, the JVM looks in the classpath.

The classpath contains a list of directories or JAR files (more on JAR files
in the next section) that the JVM searches. If the JVM cannot find a class
in the classpath, it reports a java.lang.ClassNotFoundException error.

1. You can set the classpath for a given application with the classpath
parameter, as in

javac -classpath c:\jetty\lib\javax.servlet.jar -d . XDic.java

2. Alternatively, you can set a global classpath as an environment vari-
able, as in

set classpath=c:\jetty\lib\javax.servlet.jar;

➥c:\jetty\lib\com.mortbay.Jetty.jar;.

3. It is easy to make spelling errors in classpath. For example, in the fol-
lowing command, the path to the servlet JAR is incorrect:

javac -classpath c:\jetti\lib\javax.servlet.jar -d . XDic.java

The compiler reports the following error:

480 Appendix A

Listing A.5: continued

E X A M P L E

E X A M P L E

E X A M P L E

E X A M P L E

15 2429 AppA 11/12/99 1:07 PM Page 480

XDic.java:6: Package javax.servlet not found in import.

import javax.servlet.*;

However, it is easy to recognize that this error is linked to an incorrect
classpath: If the compiler cannot find a package, it’s a sure sign that the
classpath is incorrect.

C A U T I O N
Neither the compiler nor the JVM will issue a warning if there are invalid directories in
the classpath.

Invalid directories are ignored but, of course, these invalid directories still cause prob-
lems because the JVM cannot find your classes.

4. In the following example, because the classpath does not contain a ref-
erence to the current path , the JVM cannot find the classes:

set classpath=c:\jetty\lib\javax.servlet.jar;

➥c:\jetty\lib\com.mortbay.Jetty.jar

The JVM will complain that
Cannot find servlet class com.psol.xdic.XDic

java.lang.ClassNotFoundException: com.psol.xdic.Xdic

Again, it is easy to link this problem to a classpath problem. Don’t forget
that the classpath must contain not only the different components your
application uses (servlet, Java parser, and so on), but also the classes for
your application.

C A U T I O N
The behavior of the classpath has changed between JDK 1.1 and Java 2. With Java 2,
the JVM always appends the path of its runtime libraries to the classpath.

With JDK 1.1 however, you have to include the runtime libraries. In other words, you
must be sure that the classpath contains a reference to the JVM’s runtime libraries.

JAR Files
As you have seen, when you compile Java applications, the compiler gener-
ates several directories and subdirectories. There is one directory for every
word in the package name. The com.psol.lel package, for example, creates
three directories: com, psol, and lel.

This makes it difficult to deploy applications because you must not only
copy the class files but also make sure you create all the right directories
and copy the files to the right places.

481Appendix A

E X A M P L E

15 2429 AppA 11/12/99 1:07 PM Page 481

Java Archive (JAR) files were introduced to solve this problem. A JAR file
groups all the classes in an application and it ensures that the paths are
also preserved.

Internally, JAR files are zip files so you can create them with WinZIP or
another zip tool. In practice, however, it is easier to use the JAR application
included in the JDK.

You create a JAR file with the following command:
jar cvf xdic.jar com\psol\xdic\XDic.class

If everything goes well, this command creates a new file xdir.jar. You can
use this file in a classpath instead of your application directory, as in
set classpath=c:\jetty\lib\javax.servlet.jar;

➥c:\jetty\lib\com.mortbay.Jetty.jar;xdir.jar

Java Core API
Java comes with an extensive library that covers many needs. The stan-
dard library or core API is available in the java packages. The main pack-
ages are as follows:

• java.applet defines the API for applets.

• java.awt is the library for graphical user interface development. AWT
supports buttons, menus, list boxes, and more.

• java.beans provides services for Java components or JavaBeans.

• java.io provides services to read and write data streams (mainly from
files).

• java.lang provides core objects such as exceptions. You do not need to
import this package; it is always imported.

• java.net provides network services.

• java.sql provides access to SQL databases through an interface simi-
lar to ODBC.

• java.util provides utility classes such as Vector, Hashtable, and
Calendar.

Obviously, you are not limited to the packages in the core API. You can
download more packages such as IBM’s XML for Java and use them in your
application.

482 Appendix A

E X A M P L E

15 2429 AppA 11/12/99 1:07 PM Page 482

What’s Next
Study the examples in Chapter 12 to improve your mastery of Java. With
the combination of Java and XML, you are limited only by your imagina-
tion.

483Appendix A

15 2429 AppA 11/12/99 1:07 PM Page 483

16 2429 Glossary 11/12/99 1:04 PM Page 484

Glossary
API—Application Programming Interface.

attribute—A name/value pair attached to an element.

CORBA—Common Object Request Broker Architecture, an object-oriented
middleware.

CSS—Cascading Style Sheet, a style sheet language originally developed
for HTML. See also XSL.

DCD—Document Content Description, a proposed replacement for DTD.
See also DDML, DTD, SOX, XML-Data, and X-Schema.

DDML—Document Definition Markup Language, a proposed replacement
for DTD. See also DCD, DTD, SOX, XML-Data, and X-Schema.

document—Unit of control in XML.

DOM—Document Object Model, an API for XML parsers. See also SAX.

DTD—Document Type Definition, the model of an XML document. See also
DCD, DDML, SOX, XML-Data, and X-Schema.

EDI—Electronic Data Interchange, a technology used to electronically
exchange business documents such as invoices and orders.

element—Logical unit of information in XML.

entity—Physical unit of storage in XML.

HTML—Hypertext Markup Language, the format of Web pages.

HTTP—Hypertext Transport Protocol, the protocol spoken by Web servers
and browsers.

ISO—International Standards Organization, an official organization that
publishes standards.

markup—Structural information or formatting instructions added to the
content of an electronic document.

middleware—Technology that simplifies the building of distributed appli-
cations.

namespace—A mechanism used to identify the owner of XML elements.
The namespace enables XML to combine elements from different sources.

16 2429 Glossary 11/12/99 1:04 PM Page 485

notation—Format of an external entity in XML.

parser—Software library in charge of reading and writing XML docu-
ments.

PI—Processing Instruction, a mechanism for including non-XML instruc-
tions in an XML document.

RDF—Resource Description Framework, a proposed W3C recommendation
to carry metadata.

SAX—Simple API for XML. See also DOM.

SGML—Standard Generalized Markup Language, the ancestor of both
HTML and XML.

SOX—Schema for object-oriented XML, a proposed replacement for DTD.
See also DCD, DDML, DTD, XML-Data, and X-Schema.

tag—Element of markup in XML.

URL—Uniform Resource Locator, the address of a resource on the Web.

W3C—World Wide Web Consortium, the body in charge of Web standard-
ization.

XLink—A mechanism for establishing links in XML documents.

XML—eXtensible Markup Language, a new markup language published by
the W3C to address the limitations of HTML.

XML-Data—A proposed replacement for DTD. See also DCD, DDML, DTD,
SOX, and X-Schema.

XQL—XML Query Language, a proposed language for extracting data from
XML documents.

XSL—XML Stylesheet Language, a style sheet language developed specifi-
cally for XML. See also CSS.

X-Schema—A generic name for proposed replacement of the DTD. See also
DCD, DDML, DTD, SOX, and XML-Data.

486 Glossary

16 2429 Glossary 11/12/99 1:04 PM Page 486

16 2429 Glossary 11/12/99 1:04 PM Page 487

17 2429 index 11/12/99 12:59 PM Page 488

Symbols
* (asterisk), 73
, (comma), 73-74
+ (plus), 73
? (question mark), 73
_ (underscore), 45
| (vertical bar), 73-74

A
AAP (Association of

American Publishers),
20

accessing
classpaths, 242
entities, 85
Web sites, 6

acronyms, 103
Active Server Page

(ASP), 376
ActiveX, 294
adding

CDATA sections, 55
comments, 50
elements, 128
headers, 276
links (XLink), 326
nodes, 274-276
non-XML statements,

53-54
objects, 275
properties, 95
tiers, 348

address books, 308-309,
312

Ælfred, 237, 460

alignment of text, 177
alternate style sheet,

310-311
ancestors, Java inheri-

tance, 477
anchor elements, 140,

324
anonymous boxes, 171
APIs, see DOM
appendChild() method,

277, 283
appendData() method,

278
applications, 231

business documents,
63-65

client/server, 346-347
data, 29-32
documents, 29
event handlers, 233
n-tiered, 345, 348
object-based interface,

194, 196
publishing, 62-63
scientific, 7
server-side, 458-459
standards, 197-198
three-tiered, 347-348
XML architecture,

193-194
applying style sheets,

145-148
architecture

applications, 193-194
classes, 260-261
parsers, 193-194

Index

17 2429 index 11/12/99 12:59 PM Page 489

archives, JAR (Java),
481-482

arguments
arrays declaring, 465
XSLT functions, 137

ASP, 6, 295-296
Association of American

Publishers (AAP), 20
asterisk (*), 73
attaching, see linking
Attr object, 217-218
attributes, 46-47, 97

Attr object, 217-218
content, 339-340
conversion utility, 212,

214-216
creating, 278
currency, 211, 217
data, 218
DTDs, 96
elements, 75
enumerated type, 75
exchange rates, 211,

216-217
HTML, 21-23
languages, 53
links (XLink), 324
NamedNodeMap object,

217
names, 217
nodes, 202
parents, 340
price list, 216-217
properties, 342
SAX, 244-245
selectors, 181
signatures, 328
spaces, 53
string, 75
structure, 218
tokenized, 75
values, 60, 75-76, 217, 341
XSLT, 136, 305

490

B
backend parsers, 193
background, 178-179
batch files, validation,

85
block boxes, 171
boolean primitive type,

465
borders

boxes, 175
color, 178

boxes
borders, 175
display property, 174
flow objects, 169-172
margins, 174-175
padding, 175

browsers
compatibility, 9
conversion utility, 225-227
CSS, 163, 227-228
documents, 295-296
DOM, 199, 225-229
DTDs, 296
elements, 341
frames, 225
images, 324
InDelv, 187-189
parsers, 219
style sheets, 145
XLink, 327
XML, 36-37, 129-130

built-in
business documents
semantics, 64-65
XSLT templates, 138-139

business documents
application, 63-65

C
C++, 48
calling

templates, 154
XSLT, 303-304

CALS (Continuous
Acquisition and Life-
cycle Support) stan-
dard MIL-M-28001B, 20

canvases, 168
Cascading Style Sheets,

see CSS
case-sensitive

element names, 45
syntax, 60

CGI (Common Gateway
Interface), 6, 376, 473

channels
defining, 65-66
subscriptions, 65-66

character data (CDATA),
43, 54-55
methods, 278
references, 53
Unicode, 51
whitespace() event, 244

checkout (XCommerce),
351, 407-417

child elements, 48
nodes, 202, 275
selectors (CSS2), 180
trees, 206

Clark, James, 460
classes

architecture, 260-261
imports, 459, 466, 468
package, 469
private, 469
protected, 469
public, 469
SAX, 242
static modifier, 467

classpaths
accessing, 242
Java, 475, 480-481
libraries, 381-382, 384
XCommerce, 381-382

client/server applica-
tions, 346-347
4GL, 346
common formats, 357-359

archives

17 2429 index 11/12/99 12:59 PM Page 490

491creating

cost, 347
database servers, 347
distributed, 346
email, 346-347
file servers, 346
middle tier, 372-375
middleware, 356-357
print servers, 346
roles of computers, 346
services, 346
see also browsers; server-

side applications
cloneNode() method, 277
code, see source code
colon, 45
color, 173, 178
combining style sheets,

319
comma (,), 73-74
command-line version

(Java), 84
comments, 166

adding, 50
Java, 469-470

commerce applications,
see XCommerce

common elements,
319-320

common formats,
357-359

Common Gateway
Interface (CGI), 6, 376,
473

Common Object
Request Broker
Architecture, see
middleware

companion standards,
32

comparing
CSS with XSLT, 162-163
Java with JavaScript,

223-224
prices, 312-313

ComparisonMachine
class, 260

compatibility
browsers, 9
CSS, 164
XSLT, 128

compiling
data extracts, 157
Java files, 383-384
parsers, 193
SAX, 241-242

components, server-side
applications, 458-459

computer platforms, 219
conditional

documents/sections, 91,
101

configuration files
(XCommerce), 382-383
attributes, 278
document handlers, 243
entity resolvers, 243
named items, 217
request headers, 294

conflicts in namespaces,
108, 112

connectors
DTD, 73-74
or, 338

constructors (Java), 467
content

attributes, 339-340
creating, 182
DTDs, 74
elements, 339-340
model, 71

Continuous Acquisition
and Life-cycle Support
(CALS), 20

control (Java), 468-469
conversion

attributes, 212, 214-216
browsers, 225-227
currency, 199-200, 271

DTDs, 128, 322
formats, 29
HTML, 332
Java, 221-223
JavaScript, 200-201
text, 141-144
XSLT style sheets,

131-132
CORBA objects, 221
core APIs (Java), 482
cost, 359

client/server applications,
347

domain name registra-
tion, 116

middle tier, 366
Notepad, 61

creating
attributes, 277-278
CDATA section, 277
comments, 277
content, 182
document fragments, 187,

277
DTDs, 97-99
elements, 277
entity references, 277
HTML, 284

DOM, 279-281, 283
JavaScript, 280-281,

284-288
non-XML data struc-

tures, 291-292
Java, 466
nodes, 281-282
objects, 140
parsers, 296
processing instructions,

277
style sheets, 149-151
text nodes, 277
top-level elements, 138,

282-283
URLs, 114, 117

17 2429 index 11/12/99 12:59 PM Page 491

CSS (Cascading Style
Sheets)
advanced style sheets,

179-180
boxes, 174-175
browsers, 163, 227-228
color, 173, 178
comments, 166
compatibility, 164
development, 163
documents, 126, 165-166,

187
editors, 182-184
flow objects, 168-172, 189
fonts, 176-178
images, 178-179
priorities, 167-168
properties, 168, 172-173
selectors, 166-167
simple, 164-165
tables of contents,

185-186
text, 177
versions, 163
XSLFO, 187-189
XSLT, 162-163, 185

CSS2
attribute selectors, 181
child selectors, 180
content, 182
development, 163
sibling selectors, 181
style sheets, 182

currency, 199-200, 211,
217, 271

customizing middle tier,
367

D
data

applications, 29-32
attributes, 218
directories, 383
EDI, 322

492

extracting, 155-157
HTML, 284
non-DOM, 288-289
styling, 157-158
tier, 348, 353-355, 429-444

databases
DOM, 229
offloading, 7
relational, 30
reloading, 7
servers, 347
standards, 197
updating, 32
XCommerce, 361-364,

384-385
DCD (Document

Content Description),
105

DCOM, see middleware
DDML (Document

Definition Markup
Language), 105

declarations
arrays, 465
attributes, 75, 80
document types, 76-77
elements, 71-72, 77
encoding, 51
entities, 80, 246
HTML, 153
namespaces, 114, 120
notations, 246
SAX events, 243-244
XML, 49

default settings
attribute values, 76, 80,

84
DTDs, 303-304

defining
channels, 65-66
elements, 80, 162
entities, 52

deleteData() method,
278

descendants
Java inheritance, 476-477
Text object, 206

designing DTDs
attributes, 96-97
automating, 96
elements, 96-97
nested elements, 93
object models, 92-93
owner elements, 94
parameter entities, 95
properties, 95
root-elements, 93-94
top-level elements, 93
trees, 95
URIs, 96
Web sites, 26-27

destructive document
transformations, 332

deterministic content
model, 74

development of name-
spaces, 120

digital signatures,
328-329

directories
Java, 480-481
XCommerce, 383

display property, 174
DocBook, 20
docs directory, 383
documents

applications, 29
attributes, 278
business, 63-65
Content Description

(DCD), 105
creating, 187

DOM, 279-281, 283
HTML, 284
JavaScript, 280-281,

284-288
non-XML data struc-

tures, 291-292
CSS, 165-166

CSS

17 2429 index 11/12/99 12:59 PM Page 492

493DTDs

declarations, 76-77
Document Definition

Markup Language
(DDML), 105

DTDs, 79-80
Dump service, 293
elements, 265-266,

335-336
ending, 244
entities, 52, 85-89
events, 242-243
format conversion, 29
JavaScript, 295
markups, 334-336
methods, 277
modeling, 100-104
nodes, 274-276, 281-282
objects, 203-204
posting to Web servers,

293-294
retrieving from Web

servers, 293-295
saving, 295-296
semantics, 58, 64-65
sending to the server,

292-294
sharing, 321
starting, 244
storage, 229
structural information,

10-14, 18, 63, 266, 334
top-level elements,

282-283
transformations, 330-334
trees, 204
types, 204
validation, 81-82, 84-85
viewing, 126
well-formed, 81-82
XML

creating, 187
linking CSS, 165-166
modeling, 100-104
structure, 63

DoGet() method, 477-478

DOM (Document Object
Model), 35, 198
browsers, 199, 225-229
databases, 229
documents

creating, 279-281, 283,
292

creating without,
283-288

types, 204
editors, 229
IBM parsers, 224
interface, 232-233
Java, 221-223, 482
JavaScript, 199-202
levels, 198
nodes, 202-203
OMG IDL, 220-221
SAX, 35, 231
state, 207-210, 276
Text object, 206-207
trees, 236

domain names, 115-116
DoPost() method, 477
DoPut() method, 477
double primitive type,

465
downloading

GMD-IPSI engines, 155,
229

HTML tags, 7
images, 324
Java, 84, 459-461
JDK, 241
Jetty, 381
LotusXSL, 381
Notepad, 61
parsers, 192
standalone documents, 80
XCommerce, 349-351
XML, 84, 381

DTDs (Document Type
Definitions), 69
attributes, 75-76, 96-97
automating, 96

browsers, 296
conditional sections, 91
connectors, 73-74
content model, 71, 74
conversion, 322
creating, 97
default, 76, 304
designing, 91-93
documents, 79-81
editors, 71-72, 74, 81-83,

97
elements, 96-97
entities, 80, 95
events, 242
existing, 92
extensions, 97
functions, 296
inheritance, 105
interface, 246
keywords, 72
limitations, 105
managing, 90
namespaces, 119-120
nested, 93
occurrence indicators, 73
online help, 104
owners, 94
properties, 95
public identifiers, 78-79
repetition, 105
root, 93-94
schemas, 105
SGML, 18-19, 105
sharing, 321
standards, 296
structural information,

84, 98-99, 336-339
subsets, 77-79
support, 296
syntax, 70-71, 105
top-level, 93
trees, 95
UML, 92
URIs, 96

17 2429 index 11/12/99 12:59 PM Page 493

WYSIWYG editors, 184
XSLT, 128, 296, 303

Dump service, 293
duplication of name-

spaces, 112-113
dynamic invocation, 357
dynamic servlets, 472

E
EDI (Electronic Data

Interchange), 64,
322-323

editors, 37, 60-61
CSS, 182-183
documents, 276
DOM, 229
DTDs, 81, 97, 184
elements, 341
parsers, 219
SGML, 37
style sheets, 148-149
text, 183
tree-based, 183
WYSIWYG, 184

Electronic Data
Interchange (EDI), 64,
322-323

electronic markup, 14-15
elements, 96-97, 290

attributes, 46-47, 75,
244-245

browsers, 341
common, 319-320
content, 339-340
declaration, 71-72
defining, 80, 162
documents, 11-14, 82-83,

203, 265-266
editors, 47, 72, 341
end tags, 44-45, 244
HTML, 80
indenting, 74
links (XLink), 324
names, 45-46, 60, 103-104

494

namespaces, 314-315
nesting, 47-48, 93,

340-341
nodes, 203
objects, 206, 278
owners, 94
parsers, 244, 248
properties, 342
reducing, 335-336
repeating, 341
reusing, 342
roots, 48-49, 93-94
selecting, 166
signatures, 328
start tags, 44-45, 244
state, 261, 264
subelements, 319
text, 72
Text object, 206
top-level, 77, 93, 138
trees, 204-206
XSLT, 128, 134, 140, 149,

154-155
email, 346-347
emailaholic directory,

318, 383
empty elements, 47, 72
encapsulation, 417-428
encoding

declarations, 51
end tags, 44-45, 59
parameters, 51-52
source codes, 56-57
UTF, 51

eNotepad, 183
entities, 52

accessing, 85
characters, 53
declaration, 80
defining, 52
documents, 85
DTDs, 80, 90
external, 86-89
general, 86

HTML, 153
internal, 86-89
parameters, 86-87, 95
parsed, 86-87
references, 52
resolution, 242, 246
standalone documents, 79
storing, 85
unparsed, 86-90, 246

enumerated type attrib-
utes, 75

errors
Document object, 204
Java, 470-471
messages, 132, 242, 246
parsers, 218-220
SAX, 246-247

escapeXML() function,
291

events
generating, 234-236
handlers, 233, 242
interface, 233-236
parsers, 196-197, 242-244,

248
see also SAX

exceptions, Java errors,
470-471

exchange formats, 356
exchange rate attribute,

211, 216-217
existing DTDs, 92
exportProduct() func-

tion, 303
extended links (XLink),

326-327
extends keyword (Java),

477
extensibility, 308
eXtensible Markup

Language (XML), 6
extensions, 97, 320
external entities, 86-90
external subsets, 77-80

DTDs

17 2429 index 11/12/99 12:59 PM Page 494

495InDelv XML Browser

extracting data, 155-158
extranets, 31

F
fatalError() method, 246
fields in Java, 466
files, configuration,

382-383
filters

middle tier, 369
ratings, 111

fixed attributes
namespaces, 119-120
values, 84

Flash, 6
flexibility

documents, 265-266
XSLT, 296

float primitive type, 465
flow objects, 168

boxes, 169-172
CSS, 189
Java, 464-465
properties, 169

fonts, 176-178
forcing document struc-

ture, 266
foreground color, 178
formats

common, 357-359
conversion, 29
DTDs, 303
electronic markup lan-

guages, 15
HTML, 24-25
XSLFO, 189
XSLT, 304

frames, 225
functions

DTDs, 296
XSLT, 136-137

G
general entities, 86
generating

events, 234-236
parsers, 269-270
XCommerce, 351-353
XSLT style sheets,

132-133
generic coding

HTML, 24
identifier (GI), 17

getAttribute() method,
278

getColumnNumber()
method, 245

getLength() method, 245
getLineNumber()

method, 245
getName(i) method, 245
getNamedItem()

method, 217
getPublicId() method,

245
getSystemId() method,

245
getTopLevel() function,

282
getType(i)/getType

(name) method, 245
getValue(i)/getValue

(name) method, 245
global classpaths, 480
GMD-IPSI engines, 155,

229
Goldfarb, Charles (Dr.),

18
graphics, 349
grouping font proper-

ties, 178

H
HandlerBase class, 242
hasChildNodes()

method, 278

help tools, 104
hiding syntax, 290-291
hierarchy, XSLT tem-

plates, 141
highlighting text, 183
Hotmail, 347
HTML (Hypertext

Markup Language)
attributes, 21-23
client/server applications,

358
conversions, 332
data structure, 284
documents, 152, 292-294
elements, 80
entities, 153
formatting, 24-25
generic coding, 24
limitations, 7, 162
popularity, 6
procedural markup, 24
structural information, 21
style sheets, 132-133
syntax, 333-334
tags, 6-7, 20-21
XSLT, 128, 297

HTTPPost class, 414-417
hyperlinks, 189

I
IBM, 224-225
identifiers, 78-79
IETF (Internet

Engineering Task
Force), 117

images
background, 178-179
downloading, 324

importing
classes, 468
style sheets, 182

InDelv browser, 187-189
InDelv XML Browser, 37

17 2429 index 11/12/99 12:59 PM Page 495

indenting
elements, 74
source codes, 55-56
text, 177

indexes, 185
indicators, occurrence,

73
inheritance

DTDs, 105
flow objects, 169
Java, 476-477, 479-480

inline boxes, 171
InputSource interface,

243
insertBefore() function,

276-277
insertData() method, 278
instructions, SAX, pro-

cessing, 244
int primitive type, 465
interface

applications with parsers,
194, 196

DTDHandler, 246
EntityResolver, 246
ErrorHandler, 246
event-based, 196-197,

233-236
IDL, 220
InputSource, 243
Java, 479-480
object-based, 232-233, 236
ParserFactory, 243
SAX, 231, 246-247, 260,

479
vendors, 197

internal entities, 86-89
internal subsets, 77-79
international standards

SGML, 18
Unicode, 51

Internet Engineering
Task Force (IETF), 117,
328

496

Internet Explorer
channels, 65-66
DOM support, 276
links (XLink), 325
style sheets, 145-149, 302
support, 36, 372
XML, 129-130
XSLT, 147-148, 296

InterNIC, 115
intranets, 308-309, 375
islands, 202, 276

J
Java, 6, 8, 48, 377-378

access control, 468-469
applications, 458
archives, 481-482
classes, 459, 466
classpaths, 475, 480-481
code, 462-463
command-line version, 84
comments, 469-470
constructors, 467
conversion utility, 221-223
core APIs, 482
Development Kit (JDK),

127, 241, 459-460
errors, 470-471
fields, 466
files, 383-384
flow, 464-465
imports, 468
inheritance, 476-480
interfaces, 479-480
Java Runtime

Environment (JRE), 85,
127, 459

Javadoc, 469-470
JavaScript, 223-224
keywords, 471, 477-478
methods, 467, 477-478
objects, 466
packages, 468
parameters, 467
parsers, 221, 460
price list, 249-260

servlets, 473-475
downloading, 460-461
properties, 475-476

tools, 459
variables, 465-467
Virtual Machine (JVM),

459
Web Server, 461
XCommerce, 349
XML, 237
see also SAX

JavaBean, 294
JavaScript, 6, 8, 48,

376-377
clients, 373, 375
code, 272-274
conversion.js, 200-201
documents, 280-281,

284-288, 295-296
DOM application, 199-202
Java, 223-224
methods, 289
object constructors, 289
XSLT, 298-301

JDBC, 382
JDK (Java Development

Kit), 127, 241, 459-460
Jetty, 381, 461
JRE (Java Runtime

Environment), 127
JRun, 461

K-L
keywords

DTDs, 72
Java, 471, 477-478

languages, 53, 376
length property, 172-173
libraries, 381-382, 384
limitations, 105
line height, 177
linking, 10, 165

documents, 165-166
style sheets, 276

indenting

17 2429 index 11/12/99 12:59 PM Page 496

497listings

templates, 313
XLink

adding, 326
attributes, 324
browsers, 327
elements, 324
extended, 326-327
Internet Explorer, 325
simple, 323-325
storing, 326

listings
address books, 42-43,

70-71, 98-99, 102-103
articles, 129-130
attribute conversion, 212,

214-216
catalog files, 79
channel definitions, 65-66
conditional sections, 91
configuration files,

382-383
conversion utility, 212,

221-223, 225-227
conversion.js, 200-201
CORBA, 356-357
country entities, 88
CSS

boxes, 169-170
linking XML docu-

ments, 165-166
simple, 164
style sheets, 179-180,

227-228
tables of contents,

185-186
currency, 199-200, 211
documents, 27-28, 100,

330-331
DOM, 270-271, 279
DTDs, 82, 94-96, 337
element names, 46
Emailaholic style sheet,

368-369
end tags, 56

entries, 77
exchange rate attribute,

211
external entities, 86-87,

89
extracting data, 156-157
frames, 225
HTML

attributes, 21-23
code, 20-21, 24-25, 297
conversions, 332-333
documents, 132-133,

152, 284
results, 333-334
sending document to

server, 293
writing, 363-364

indexes, 157-158
Internet Explorer,

145-148, 302
invalid document, 83
Java

application, 462-463
Checkout class, 407-414
Comlet class, 390-393
Editor class, 444-446
HTTPPost class,

414-417
Merchant class, 398-403
MerchantCollection

class, 393-396
NotImplementedError

class, 428
Product object, 404-407
Shop class, 386-390
Viewer class, 451-454
XMLServer class,

429-434
XMLServerConsole

class, 435-444
XMLUtil class, 417-427

JavaScript, 280-281,
284-288, 373-374,

447-450
links , 35
memo, 10

merging files, 156
names, 58
namespaces, 33, 121-122

attributes, 118-120
different names, 111-112
duplication, 112-113
prefix declaration, 114,

119
ratings, 109-111
scoping, 118

newsletters, 62-63
orders, 63-64
phone lists, 308-310
price lists, 195, 234,

248-260, 312-316
product lists, 31, 359-360,

366-367, 370-371
resources, 108-109
RTF, 15-16
SAX, 237-241, 479
Server Configuration File,

475
Service-Side JavaScript,

376
servlets, 473-476
SGML, 19
state information, 208-209
style sheets, 34-35,

149-151
alternate, 310-311
combining, 320
common elements,

318-319
conversions, 131-132
Editor class, 450-451
Emailaholic, 318
Merchants, 397
Playfield, 316-317
Viewer class, 454-455
WriteIT, 317
XMLi, 317

TeX, 17
text style sheet, 142-143
valid documents, 82-83
valid invoices, 338

17 2429 index 11/12/99 12:59 PM Page 497

Web servers, 294-295
writing, 361-363
XCommerce, 359-361, 365
XSLFO, 187-189

loading
style sheets, 320
XSLT, 305

location
elements in documents,

82-83
state, 261
XSLT templates, 138-139

Locator object, 245
Locomotive, 461
long primitive type, 465
LotusXSL, 37, 132, 310,

320, 381, 460
browsers, 296
processors, 127
XSLT style sheets, 132

M
macros, 17-18
maintaining

DOM
state, 208-210
SAX, 247-260

makeXML() function,
289

managing DTDs with
entities, 90

mapping, 220, 322
margins, boxes, 174-175
markup languages

comments, 50
documents, 334-336
electronic, 14
formatting, 15
plain text, 43
procedural, 15
readability, 43
software, 44
source codes, 14

498

structure, 43
tags, 17

matching XSLT items,
136-139

Megginson, David, 237
Merchant class, 397-403
MerchantCollection

class, 315-316, 393-397
merging data extracts,

156-157
messages, 219-220
methods

ActiveX, 294
CharacterData, 278
Document, 277
Element, 278
Java, 467, 477-478
JavaScript, 289
NamedNodeMap object,

217
Node, 277-278
SAX, 243
Text, 279

Microsoft, 224, 460
middle tier application,

347
clients, 372, 374-375
cost, 366
customizing, 367
filters, 369
style sheets, 369-371
tools, 366
XCommerce, 349, 386-393

middleware
applications, 356
CORBA, 356-357
dynamic invocation, 357
protocols, 356
tools, 356

modeling XML docu-
ments, 100-104

Mozilla, 36, 145
MP3, 6

multiple inheritance,
Java, 479-480

multiple items, select-
ing, 154-155, 166

N
n-tiered applications,

345
adding, 348
client/server, 346-347
three-tiered, 347-348

NameNodeMap object,
217

names
attributes, 217
elements, 45-46, 103-104
fonts, 176
nodes, 203, 217
parent, 203
spaces, 60
syntax, 58

namespaces
conflicts, 108, 112
declaration, 114, 120
domain parking, 116
DTDs, 119-120
duplication, 112-113
elements, 120, 314-315
fixed attributes, 119-120
names, 114
prefixes, 113-114
PURLs, 118
ratings, 108-111
scoping, 118
style sheets, 121-122
TLDs, 115
URLs, 114-115, 117
URNs, 117-118
Xlink, 122
XML resources, 108-109

Near & Far, 104
nesting elements, 47-48,

93, 340-341

listings

17 2429 index 11/12/99 12:59 PM Page 498

499parsers

Netscape
Communicator, 36

newsletters, 62-63
nodes

adding, 274-276
attributes, 202
child, 202, 275
codes, 203
creating, 281-282
DOM, 202-203
elements, 203
names, 217
objects, 206-207, 217
parent, 202
preceding, 202
properties, 277-278
trees, 205
types, 202
values, 203
XSLT functions, 136-137

nonvalidation parsers,
193, 225

non-XML data struc-
tures
adding, 53-54
documents, 291-292
DOM, 288-289
nondestructive transfor-

mations, 332
notations

declaring, 246
unparsed entities, 89-90

Notepad, 60-61, 183
NotImplementedError

class, 428

O
Object Management

Group (OMG IDL),
220-221, 377

object models, 232-233
adding, 275

attributes, 96-97, 218
automating, 96
constructors, 289
designing, 92-93
elements, 96-97
Java, 466
limitations, 236
nested, 93
owners, 94
parameter entities, 95
parsers, 194, 196, 243
properties, 95, 218
removing, 275
root, 93-94
top-level, 93
trees, 95
UML, 92
URIs, 96
XSLT, 140

occurrence indicators,
73

offloading databases, 7
OMG IDL (Object

Management Group
Interface Definition
Language), 220-221, 377

open() method, 294
open-source software,

461
or connector, 338
Oracle, 37, 224
orders (XCommerce),

353-355
forms, 63-64
generating, 351-353
processing, 365-366

output
DTDs, 303
XSLT style sheets, 134

owner elements, 94

P
package classes (Java),

468-469
padding boxes, 175
pages, printing, 168
parameters

encoding, 51-52
entities, 86-87, 95
Java, 467

parents
attributes, 340
elements, 48
nodes, 202

parsers, 191, 231
attributes, 216-217
backend, 193
code, 224
compilers, 193
CORBA objects, 221, 296
documents, 204, 295
downloading, 192
elements, 244, 248
entities, 86-87
errors, 218-220
events, 196-197, 234-236
files, 243
generators, 269-270
IBM, 224-225
Java, 221, 460
Microsoft, 224
nonvalidation, 193, 225
objects, 194, 196, 204,

243-244
Oracle, 224
parse() method, 243
ParserFactory interface,

243
SAX, 242, 246-247
standards, 197-198
Sun, 224
switching, 243
syntax, 37, 192-193

17 2429 index 11/12/99 12:59 PM Page 499

validation, 193, 225
XML architecture,

193-194
paths

length, 153
XSLT syntax, 135

payments (XCommerce),
349

#PCDATA keyword, 72
PDAs, 6-7, 144
PDOM (Persistent

DOM), 229
percentage property,

173
Perl, 237, 376
Permanent URLs

(PURLs), 118
Persistent DOM

(PDOM), 229
personal digital assis-

tants (PDAs), 6
phone list style sheet,

309-310
platforms, 144, 219
Playfield style sheet,

316-317
plug-ins, grid posting to

Web servers, 294
plus (+), 73
posting documents to

Web servers, 293-294
preceding nodes, 202
predefined tags, 9
prefixes, namespaces,

113-114
presentation tier (three-

tiered application), 347
price lists

attributes, 216-217
comparison, 312-313
merchants, 315-316

print servers, 346
printing pages, 168
priorities, CSS, 167-168
private classes, 469

500

procedural markup
HTML, 24
RTF, 15-16

processing
instructions (PI), 53-54,

244
XCommerce orders, 349,

365-366
products (XCommerce)

databases, 361-364
downloading, 349-351
listing, 359-361
objects, 404-407
uploading, 364

programming lan-
guages, 376
Java, 377-378
JavaScript, 376-377
Omnimark, 377
Perl, 376
Python, 377

ProjectX, 237, 460
properties

adding, 95
attributes, 342
CharacterData, 278
CSS, 168, 172-173
directories, 383
documents, 277
elements, 278, 342
flow objects, 169
Java, 475-476
nodes, 277-278
protected classes, 469
text, 279

protocols, middleware,
356

public classes, 469
public identifiers, 78-79
publishing application,

62-63
PURLs (Permanent

URLs), 118
Python, 237, 377

Q-R
question mark (?), 73
quotes, attribute values,

60

ratings
different names, 111-112
namespaces, 109-111

RDF (Resource
Definition
Framework), 58

reading parser files, 243
recommendations

namespaces, 108
XSL, 127

recording state ele-
ments, 264

reducing elements,
335-336

references, 52-53
registration

domain names, 115-116
event handlers, 242
TLDs, 116

relational databases, 30
reloading databases, 7
Remote Procedure Call

(RPC), see middleware
removing

attributes, 278
child from relationship,

277
named items, 217
objects, 275

rendering screens, 168
repeating elements, 341
repetition, DTD, 105
replaceChild() method,

277
replaceData() method,

278
Resource Definition

Framework (RDF), 58
resources, namespaces,

108-109

parsers

17 2429 index 11/12/99 12:59 PM Page 500

501spaces

retrieving documents
from Web servers,
293-295

reusing elements, 120,
342

root elements, 48-49,
93-94

RPC (Remote Procedure
Call), see middleware

RTF (Rich Text Format),
15-16

S
saving documents, 276,

295-296
SAX (Simple API for

XML), 35, 198
architecture, 260-261
AttributeList, 244-245
classes, 242, 260
code, 237-241
compiling, 241-242
documents ending, 244
elements event handlers,

242-244
IBM parsers, 224
instructions, 244
interface, 246, 260, 479
Java, 237
Locator object, 244-245
methods, 243
notations, 246
parsers, 243, 246-247
Perl, 237
ProjectX, 237
Python, 237
state

efficiency, 265
elements, 261
location, 261
maintaining, 247-260
recording elements, 264

transition values,
262-265

updating, 264
trees, 263

scalability, 358
schemas, 105
scientific applications, 7
scoping namespaces, 118
screens, 168, 376
scripting languages, 458
search engines, 6
security, 6, 349
selectors, 166-167
semantics, 58, 64-65
send() method, 294
sending documents to

the server, 292-294
server-side applications

CGI, 473
components, 458-459
documents, 292-295
Java, 377-378, 458
JavaScript (SSJS),

376-377
Omnimark, 377
Perl, 376
Python, 377
see also client/server

applications
servlets

classpaths, 475
downloading, 460-461
dynamic, 472
Java, 473-475
properties, 475-476
writing, 293

settings, see configura-
tion

SGML (Standard
Generalized Markup
Language)
CALS, 20
DocBook, 20
documents, 18

DTDs, 18-19, 105
editors, 37
international standards,

18
models, 18
syntax, 19

sharing documents, 321
shell scripts, 85
shopping carts

(XCommerce), 349
short primitive type, 465
sibling selectors (CSS2),

181
signatures

attributes, 328
digital, 328-329
elements, 328
standards, 327

Simple API, see SAX
simple CSS, 164-165
simple links (XLink),

323-325
sizing fonts, 176
smart phones, 6-7
software

open-source, 461
speed, 44

source code
Document object, 204
HTML, 297
indenting, 55-56
Java, 462-463
JavaScript, 272-274
mark-up, 14
nodes, 203
parsers, 224
SAX, 237-241
trees, 153

SOX (Schema for Object-
oriented XML), 105

spaces
attributes, 53
element names, 60
speed, 44

17 2429 index 11/12/99 12:59 PM Page 501

splitText() method, 279
SQL language, 44
standalone documents

downloading, 80
DTD, 79-80
entities, 79
external subsets, 80

Standard Generalized
Markup Language, see
SGML

standards
applications, 197-198
CALS, 20
companions, 32
CSS, 33-35
databases, 197
DTDs, 296
EDI, 322
international, 18
namespaces, 33
parsers, 197-198
schemas, 105
signatures, 327
syntax, 10
Unicode, 50-52
vCard, 101-102
W3C, 32
XLink, 35-36, 323
XPointer, 35-36
XQL, 155
XSL, 33-35

start tags, 44-45
start() event, 244
Startmail, 347
state

DOM, 207-210
elements, 261, 264
location, 261
SAX

efficiency, 265
maintaining, 247-260
transition values,

262-265
updating, 264

502

statements, 53-54
static modifier, 467
storage

attributes, 339-340
documents, 229
elements, 339-340
entities, 85
links (XLink), 326
XCommerce, 353-355

streaming tags, 6
string attributes, 75
structural information

attributes, 218
documents, 10-14, 18, 266
DTDs, 84, 98-99, 303,

336-339
HTML, 21
markup, 43
non-XML, 291-292
tree-like, 42
XSLT source trees, 153

style sheets, 10, 318
advanced, 179-180
alternate, 310-311
applying, 145-148
attaching, 276
combining, 319
common elements, 319,

367
data extracts, 157-158
documents, 331
editing, 148-149
Emailaholic, 318
fonts, 177
HTML, 153
importing, 182
Internet Explorer, 302
loading, 320
middle tier, 369-371
namespaces, 121-122
phone lists, 309-310
Playfield, 316-317
text, 141-144
WriteIT, 317
XMLi, 317

XSLT, 304-305
automating, 305
conversion, 131-132
creating, 149-151
elements, 134
generating, 132-133
LotusXSL, 132
output, 134

see also CSS
subelements, 319
subscriptions to Web

sites, 65-66
subsets, 77-79, 263
substringData() method,

278
Sun

parsers, 224
ProjectX, 237

super keyword (Java),
478

support
DOM, 276
DTDs, 296
Internet Explorer, 372

switching parsers, 243
syntax

attributes, 46-47, 60
case-sensitive, 60
CDATA sections, 54-55
character data, 43
DTD, 70-71, 105
elements, 45-46
end tags, 44-45, 56-57, 59
entities, 52-53
hiding, 290-291
HTML, 333-334
markup, 43-44
parsers, 37, 192-193
rules, 59
SGML, 19
source codes, 55-56
spaces, 60
standards, 10
start tags, 44-45

splitText() method

17 2429 index 11/12/99 12:59 PM Page 502

503viewing

Unicode, 50-52
XSLT paths, 135

system identifiers, 78

T
tables of contents,

185-186
tags

development, 8
HTML, 6-7, 20-21
macros, 17-18
markup languages, 17
names, 206
predefined, 9
search engines, 6
security, 6
specialized, 8
streaming, 6
XML, 27-28

targets, processing
instructions (PI), 54

templates
calling, 154
links, 313
XSLT

built-in, 138-139
elements, 134
hierarchy, 141
locating, 138-139
matching, 137, 139-140

text
alignment, 177
conversion, 141-144
editors, 183
elements, 72
indent, 177
line height, 177
objects, 206-207
plain, 43
properties, 279

this keyword (Java), 478
three-tiered applica-

tions, 347-348

throw keyword (Java),
471

TLD (Top Level
Domain), 93, 115-116,
138, 282-283

tokenized attributes, 75
tools

Java, 459
middle tier, 366
middleware, 356
XCommerce, 417-428

Top Level Domain
(TLD), 93, 115-116, 138,
282-283

toXML() function, 289
transformations in doc-

uments, 330-334
transformNode()

method, 304
transitions, SAX state,

262-265
trees

Document object, 204
DOM, 236
editors, 183
elements, 204-206
objects, 275
structures, 42
subsets, 263

types, documents, 202,
204

U
UML (Unified Modeling

Language), 92
underscore (_), 45
Unicode, 50-52
unparsed entities, 86-90
updating

address books, 308-309,
312

databases, 32

phone lists, 312
state, 264

uploading XCommerce
products, 364

URIs (Universal
Resource Identifiers),
78, 96

URLs (Uniform
Resource Locators),
384
creating, 114, 117
domain names, 115
flexibility, 115
namespaces, 114-115
properties, 173

URNs (Uniform
Resource Names),
117-118

UTF encodings, 51, 81-82

V
validation

batch files, 85
documents, 84-85
parsers, 193, 225
shell scripts, 85

values
attributes, 60, 75-76, 84,

217, 341
default, 80
nodes, 203
SAX, 262-265

variables, 465-467
vCard, 43, 101-102
vendor interface, 197
vertical bar (|), 73-74
viewing

documents, 126
extensions, 320
Web sites, 144
XML in browsers, 129-130

17 2429 index 11/12/99 12:59 PM Page 503

W
W3C (World Wide Web

Consortium), 6, 32, 105
walking

nodes, 210
products, 210, 246
tree elements, 204-206

Web sites
access, 6
designing, 26-27
development, 6
EDI, 323
Hotmail, 347
InterNIC, 115
Microsoft, 224
Near & Far, 104
Omnimark, 377
Oracle, 224
platforms, 144
servers, 293-295
Startmail, 347
subscriptions, 65-66
Sun, 224
Unicode, 50
viewing, 144
W3C, 6
XML links, 92
XTransGen (IBM), 305

Webmail, 347
WebSTAR, 461
weight, fonts, 177
well-formed documents,

81-82
whitespace, parsers, 244
World Wide Web

Consortium (W3C), 6,
32, 105

WriteIT style sheet, 317
writing

applications, 356
servlets, 293
XML, 289-290

WYSIWYG editors, 184

504

X-Z
XCommerce, 348

checkout, 351, 407-417
classpaths, 381-382, 384
common formats, 358-359
configuration files,

382-383
data tier, 353-355
databases, 361-364,

384-385
directories, 383
Editor class, 444-446
graphics, 349
HTTPPost class, 414-417
Java files

classes, 349
compiling, 383-384

JavaScript, 447-450
Merchant class, 397-403
MerchantCollection class,

393-397
middle tier, 349

clients, 372-375
Comlet class, 390-393
cost, 366
customizing, 367
filters, 369
Shop class, 386-390
tools, 366

NotImplementedError
class, 428

orders, 351-353, 365-366
payments, 349
products

downloading, 349-351
listing, 359-361
objects, 404-407
uploading, 364

security, 349
shopping carts, 349
style sheets, 369-371,

450-451
tools, encapsulation,

417-428

Viewer class, 451-455
XMLServer class data

tier, 429-434
XMLServerConsole class

data tier, 435-444
XMLUtil class, 417-427

XHTML, 144
XJParse, 237, 460
XLink, 35-36, 323

adding links, 326
attributes, 324
browsers, 327
elements, 324
extended, 326-327
Internet Explorer, 325
namespaces, 122
simple, 323-325
standards, 323
storing, 326

XMetaL, 37, 54, 184
XML (eXtensible

Markup Language), 6
XML for Java, 237, 381,

460
XML-Data, 105
XMLi

Editor class, 444-446
JavaScript, 447-450
style sheets, 317, 450-451
Viewer class, 451-455
XCommerce

directories, 383
XMLUtil class, 417-427
XP (James Clark), 237
XPointer, 35-36
XQL (XML Query

Language), 155
XSL (XML Stylesheet

Language), 33-35
directories, 383
documents, 126
processors, 37, 127
recommendations, 127
style sheets, 148-149

W3C

17 2429 index 11/12/99 12:59 PM Page 504

505XTransGen

XSLFO (XSL Formatting
Objects), 127, 161,
187-189

XSLT (XSL
Transformation), 127
advantages, 304
attributes, 136
calling, 303-304
CSS, 162-163, 185-187
data extracts, 155-158
DTDs, 128, 296, 303
elements, 128, 140, 149,

154-155
errors, 220
flexibility, 296
formats, 304
functions, 136-137
HTML, 128, 152-153, 297
Internet Explorer, 296
Internet Explorer 5.0,

147-148
JavaScript, 298-301
loading, 305
objects, 140
paths, 135, 153
source trees, 153
style sheets, 304

automating, 305
conversion, 131-132
creating, 149-151
elements, 134
generating documents,

132-133
LotusXSL, 132
output, 134

templates
built-in, 138-139
calling, 154
elements, 134
hierarchy, 141
locating, 138-139
matching, 137, 139-140

XTransGen, 305

17 2429 index 11/12/99 12:59 PM Page 505

17 2429 index 11/12/99 12:59 PM Page 506

The IT site
you asked for...

It’sHere!

InformIT is a trademark of Macmillan USA, Inc.
Copyright © 1999 Macmillan USA, Inc.

InformIT is a complete online library delivering
information, technology, reference, training, news

and opinion to IT professionals, students
and corporate users.

Find IT Solutions Here!

www.informit.com

18 InformIT 11/12/99 1:23 PM Page 507

18 InformIT 11/12/99 1:23 PM Page 508

18 InformIT 11/12/99 1:23 PM Page 509

18 InformIT 11/12/99 1:23 PM Page 510

18 InformIT 11/12/99 1:23 PM Page 511

18 InformIT 11/12/99 1:23 PM Page 512

